Robust Constrained Offline Reinforcement Learning with Linear Function Approximation 上海科技大学

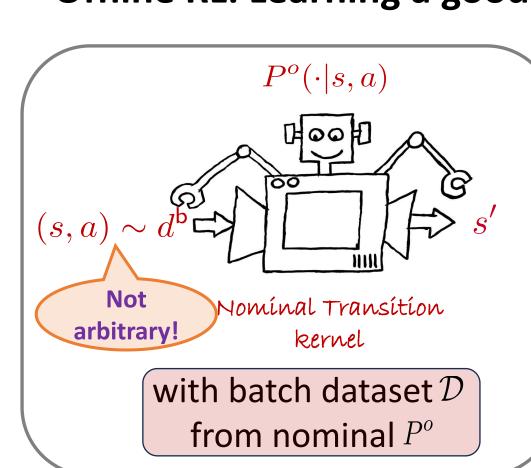
wangwb2023@shanghaitech.edu.cn, hew2@andrew.cmu.edu Find a PhD Position

Our paper is here!

Motivation

Offline RL: Learning a good policy from batch data

ShanghaiTech University

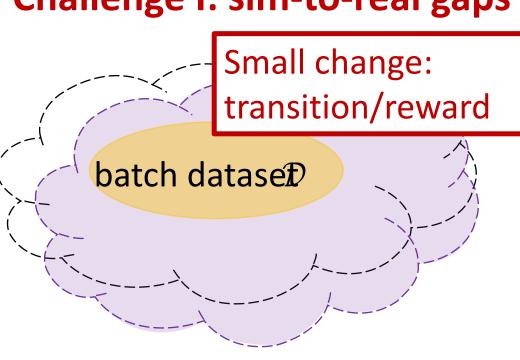


Standard Constrained RL: Learn the optimal policy of the nominal MDP under constraints?

Robust Constrained RL: Learn the **robust and safe** policy around the nominal MDP?

Challenge II: safety constraint

Challenge I: sim-to-real gaps



Challenge III: sample complexity blows up for large state space Can we design a sample-efficient algorithm that is robust

to the sim-to-real gap and ensures constraint satisfcation, even for large state space?

Problem Formulation

Lin-RCMDPs: distributionally robust linear CMDPs

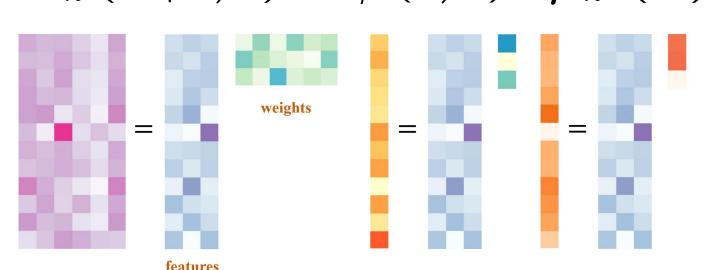
We use the uncertainty set around the
$$\mathcal{M}_{\rm rob} = (\mathcal{S}, \mathcal{A}, H, \mathcal{P}^{\rho}(P^0), r, g) \ \ \text{nominal transition kernel to characterize}$$
 the sim-to-real gap.

We use the uncertainty set around the

- Linear representations: The reward function and nominal transition kernel are decomposed as $r_h = \phi(s,a)^{\top} \theta_{r,h}, \ g_h = \phi(s,a)^{\top} \theta_{g,h},$
 - ullet $\phi(s,a)\in\mathbb{R}^d$: feature mapping

$$P_h(s'|s,a)\!=\!\phi(s,a)^{ op}\mu_h^P(s')$$

Note that the number of features d is much smaller than the size of state space.

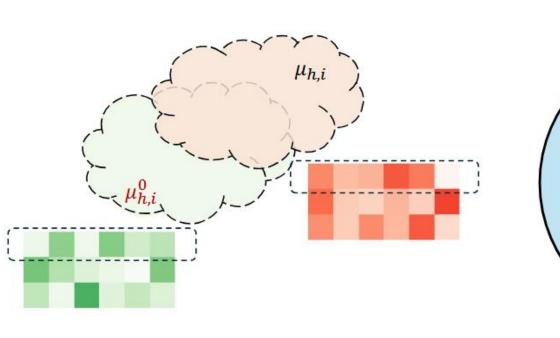


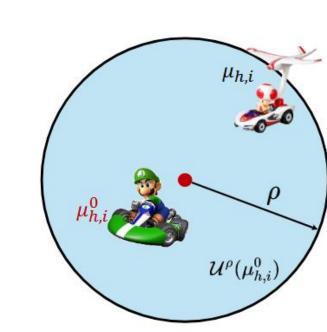
► The uncertainty set satisfies d-rectangularity assumption:

$$\mathcal{P}^{
ho}(P^0) = \left\{\phi(s,a)^ op \mu_h(\cdot): \mu_{h,i} \in \mathcal{U}^{
ho}(\mu_{h,i}^0), orall (i,s,a,h) \in [d] imes \mathcal{S} imes \mathcal{A} imes [H]
ight\}$$

Decoupling the distribution shift into each feature dimension:

$$\mathcal{U}^{
ho}(\mu_{h,i}^0)\!:=\!\Big\{\!\mu_{h,i}\!:\!rac{1}{2}\|\mu_{h,i}\!-\!\mu_{h,i}^0\|\!\leq\!
ho\, ext{ and }\mu_{h,i}\!\in\!\Delta(\mathcal{S})\!\Big\},\;orall\,i\!\in\![d]$$





Robust value/Q function: measure accumulative rewards in the worst case of performing in the transition kernel inside the uncertainty set.

$$egin{aligned} V^{\pi,
ho}_{r/g,h}(s)&=\inf_{P\in\mathcal{P}^
ho(P^0)} V^{\pi,
ho}_{r/g,h}(s)\ Q^{\pi,
ho}_{r/g,h}(s,a)&=\inf_{P\in\mathcal{P}^
ho(P^0)} Q^{\pi,
ho}_{r/g,h}(s,a) \end{aligned}$$

Learning goal: Given the dataset $\mathcal{D} = \{(s_h^{\tau}, a_h^{\tau}, r_h^{\tau}, g_h^{\tau}, s_{h+1}^{\tau})\}_{h \in [H], \tau \in [K]}$ from the nominal environment, find an ϵ —robust policy $\widehat{\pi}$ such that

Sub-optimality gap:

$$V_{r,\,1}^{\,\star\,,
ho} - V_{r,\,1}^{\,\hat{\pi}\,,
ho} \leq \epsilon,\,\, b - V_{g,\,1}^{\,\hat{\pi}\,,
ho} \leq \epsilon$$

 $\max V_{r,1}^{\pi,\rho}(s) - \beta(b - V_{q,1}^{\pi,\rho}(s))_{+}$ (2)

Comparison with the most relevant work

	State Representation	Blanchet et al. (2024)	Wang et al. (2024)	Ghosh (2024)	This Work
unconstraint	$S \times A$ -rectangular (Tabular)	✓	√	√	√
	d-rectangular (Linear)	✓	✓	X	✓
constraint	$S \times A$ -rectangular (Tabular)	×	X	√!	✓
	d-rectangular (Linear)	X	X	X	✓

Table 1: Comparison with the most relevant works in robust RL. ✓ indicates that the work is capable of addressing the model with robust partial coverage data, ✓! signifies that the work requires full coverage data to solve the model, and X denotes that the work is not applicable to the model. Light green highlights the models that are either introduced or proven to be tractable in this work.

Performance Guarantees for DROP

Arbitrary: without any data coverage assumption

Theorem 2 (minimal offline data assumption)

Consider any d-rectangular Lin-RCMDP, where the uncertainty is measured by TV distance. With high probability, the policy $\widehat{\pi}$ generated by CROP-VI satisfies

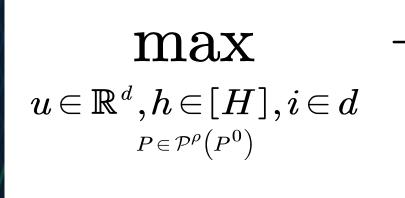
$$V_1^{\star,\rho} - V_1^{\widehat{\pi},\rho} \leq \widetilde{O}(dH^2) \max_{P \in \mathcal{P}^{\rho}(P^0)} \mathbb{E}_{\pi^{\star},P} \left[\|\phi_i(s_h, a_h) \mathbb{1}_i\|_{\Lambda_h^{-1}} \right], \quad b - V_{g,1}^{\widehat{\pi},\rho} \left(\zeta \right) \leq \varepsilon$$

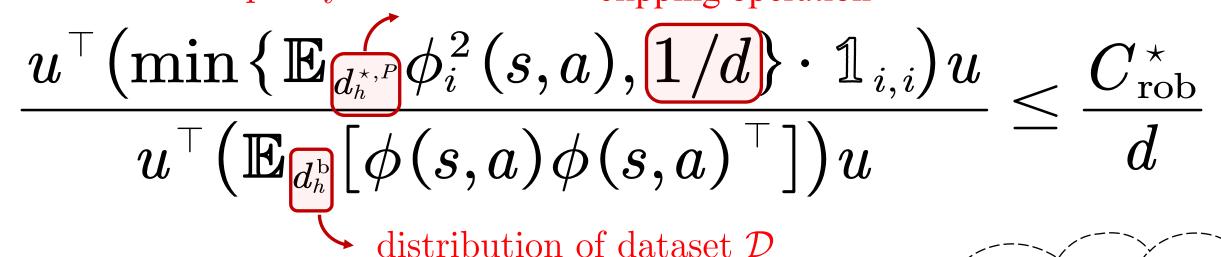
Instance-dependent sub-optimality gap

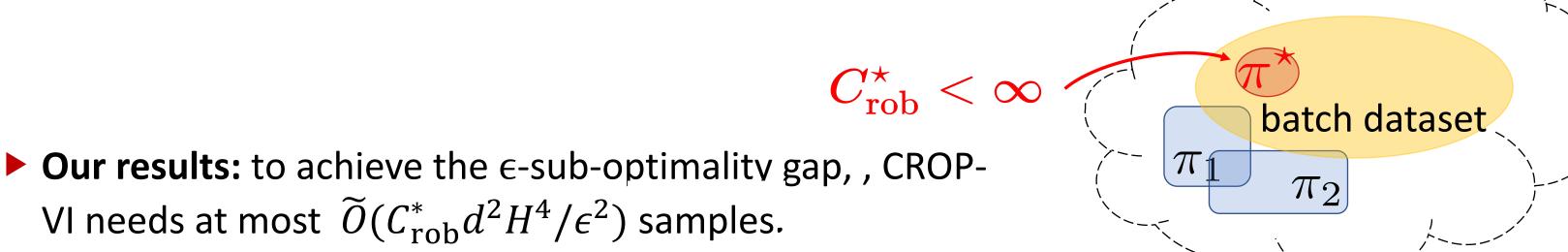
depending on the batch data quality

- Partial feature coverage
 - ► **Assumption:** robust single-policy clipped concentrability

 π^* occupancy distribution clipping operation





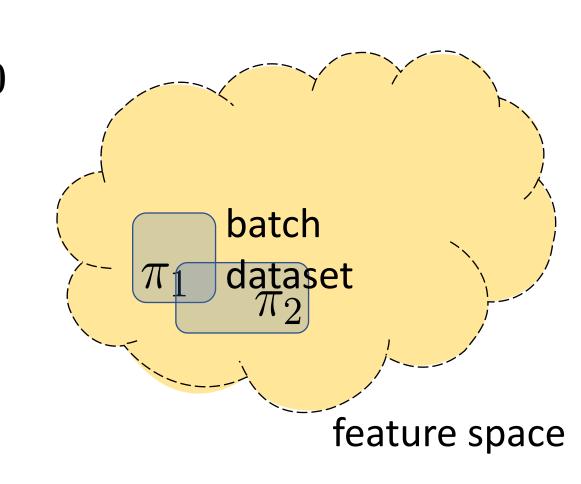


VI needs at most $\widetilde{O}(C_{\rm rob}^*d^2H^4/\epsilon^2)$ samples.

Full feature coverage

Assumption: $\kappa = \min_{h \in [H]} \lambda_{\min} \Big(\mathbb{E}_{d_h^{\mathrm{b}}} ig[\phi(s,a) \phi(s,a)^ op ig] \Big) > 0$ Samples can explore the feature space uniformly well.

• Our results: to achieve the ϵ -sub-optimality gap, CROP-VI needs at most $\widetilde{O}(\frac{d^2H^4}{\kappa\epsilon^2})$ samples.



feature space

CROP-VI: Constrained Robust Optimistic-Pessimistic Value Iteration

Input: batch dataset ${\mathcal D}$ feature mappings parameters λ_0 , γ_0

 $\max \ V_{r,1}^{\pi,
ho}(s)$

optimal for (2).

Two-fold subsampling

Preparation: construct a **temporally** independent dataset

▶ Step 1: construct a rectified dual form for the original constrained problem

Initialization: $\widehat{Q}_{H+1}(\cdot,\cdot)=0 \quad \widehat{V}_{H+1}(\cdot)=0$

For h = H, H - 1, ..., 1

s.t. $V_{q,1}^{\pi,\rho}(s) \ge b$ (1)

- ▶ Step1: construct a rectified dual form for the original constrained problem
- ► Step1: construct an empirical Bellman operator for Lin-RCMDPs
- ▶ Step 2: plan by pessimistic value and optimistic constraint iterations
- **Empirical robust Bellman operator:** approximate by ridge regression

$$egin{aligned} heta_{j,h} pprox & rg \min_{ heta \in \mathbb{R}^d} \sum_{ au \in \mathcal{D}_h^0} \left(\phi(s_h^ au, a_h^ au)^ op heta_j - j_h^ au
ight)^2 + \lambda_0 \| heta\|_2^2 \end{aligned}$$

$$\mathbb{E}_{s \sim \mu_{h,i}^0} [V_j]_{lpha} (s) pprox rgmin_{
u \in \mathbb{R}^d} \sum_{ au \in \mathcal{D}_i^0} \left(\phi(s_h^ au, a_h^ au)^ op
u - [V_j]_{lpha} (s_{h+1}^ au)
ight)^2 + \lambda_0 \|
u\|_2^2$$

Step 2: plan by pessimistic value iterations

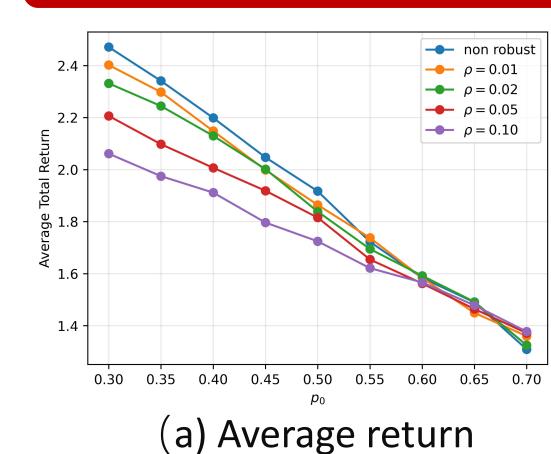
Following the pessimistic principle, we then estimate the reward Q-function as

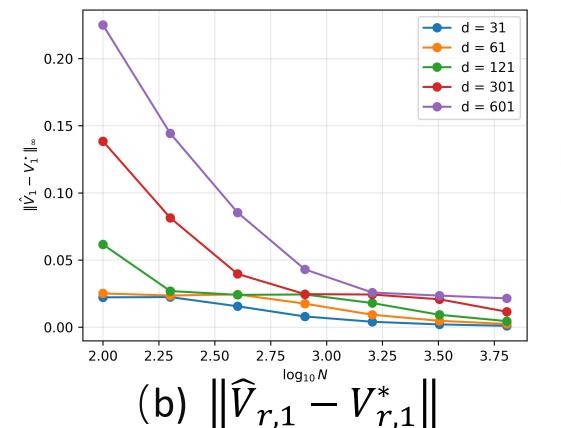
$$ar{Q}_{r,h}(s,a)\!=\!\left(\widehat{\mathbb{B}}_{\,r,h}^{\,
ho}\,\widehat{V}_{\,r,h+1}\!
ight)(s,a)\!-\!\left(\!\gamma_0\sum_{i=1}^{d}\!\left\|\phi_i(s,a)\,\mathbb{1}_i
ight\|_{\Lambda_h^{-1}}\!
ight)$$

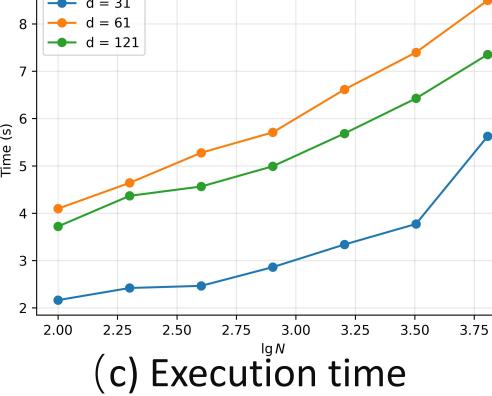
Penalty function: address uncertainty in each dimension

Incentive function: balance exploration and exploitation trade-off

Experiment Results







Original robust Bellman operator: by strong duality, we have for j = r, g

 $\left(\mathbb{B}_{j,h}^{\rho}V_{r/g}\right)(s,a) = \phi(s,a)^{\top}(\boldsymbol{\theta}_{j,h} + \boldsymbol{\nu}_{h}^{\rho,V_{j}}) \quad \text{the i-th coordinate} \\ \nu_{h,i}^{\rho,V_{j}} \coloneqq \max_{\alpha \in [\min_{s}V_{j}(s),\max_{s}V_{j}(s)]} \left\{\mathbb{E}_{s \sim \boldsymbol{\mu}_{h,i}^{0}}[V_{j}]_{\alpha}(s) - \rho\left(\alpha - \min_{s'}\left[V_{j}\right]_{\alpha}(s')\right)\right\} \quad \text{with $\left[V_{j}\right]_{\alpha}(s) = \min\left\{V_{j}(s),\alpha\right\}$} \quad \text{with $\left[V_{j}\right]_{\alpha}(s) = \min\left\{V_{j}(s),\alpha\right\}$}$

Step 2: construct an emperical Bellman operator for Lin-RCMDPS

Given $\varepsilon > 0$, setting $\beta = H/\epsilon$ ensures that the optimal solution $\widehat{\pi}$ of (2) incurs a constraint

infeasible policy π such that $V_{a,1}^{\pi,\rho}(\zeta) - b < \epsilon$, then π^* (i.e., the optimal solution of (1)) is also

violation of at most ϵ , i.e., $(b - V_{q,1}^{\widehat{\pi},\rho}(\zeta)) \leq \epsilon$. Consequently, with $\beta = H/\epsilon$, if for any

However, we cannot directly have access to the ground-truth $\theta_{j,h}$ and μ_h^0 .