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Background and Motivation

s High-dimensional Streaming Data: Each time a snapshot of a data vector x € RY is generated, with d large.
m Challenges in Modern Data Acquisition:

m Data generation at unprecedented rate: data samples are 1) not observable due to privacy or security constraints; 2) distributed at multiple locations; 3) online generated on the fly and can
only be accessed once.

m Limited processing power at sensor platforms: 1) time-sensitive: impossible to obtain a complete snapshot of the system; 2) storage-limited: cannot store the whole data set; 3)
power-hungry: minimize the number of observations.

m Covariance Sketching: The covariance structure can be recovered without measuring the whole data stream.

m Contribution: We propose a nonconvex problem with an efficient algorithm, which can be proved to attain the oracle statistical rate.

Sampling Model

m Consider n independent observations {x;},_;, each drawn from a zero-mean Essential Assumptions:
random vector x with covariance matrix X*. Given m sensing vectors {a;}} ;, m The true covariance Tatrix 3" satisfies
the quadratic measurement measurement y;, i = 1,..., m, is given by 0 < > < Ain (Z7) < Anax (2) < K < 00,
_ y = Agvec (S)T+ n=A(S)+mn, for some constant x > 1.
where y [y1, -+, ym] » M [m1, - - an] are additive measurement noises, m [ here exist universal constants « and ,u such that
Az = |(a1®a1) - - (am® am)| and vec(S) denotes the vectorization of S 5| = min (o + 1) \,
obtained by stacking its columns, and A : R9*9 — R™ is a linear operator. ™ (ij)es
m Assumptions: where 1 € (0, «) satisfies py (uA) > 5
m The sensing vectors {a;};, are i.i.d. sub-Gaussian random variables with zero mean and
identity covariance.
m The measurement noises {7;}:_, are i.i.d. sub-exponential random variables with mean 0 Theorem 1: Let S = { ’ ./ | 2 # O} and |S‘ = 3.
2 1
and variance proxy o” Define £(X) = 5- ||y — A(X)|} — 7 log det X .
Problem Formulation Under some standard assumptions, the e-optimal solution XK (1 < k < K)
satisfies the following contraction property:
m We propose to estimate the sparse covariance matrices from quadratic measurements using
the non-convex penalt () * ! * (k1) *
y =3 <= IVAXZ))slle+  eVvs +4 (|32 =X,
%/_/ . . VY.
K P oracle rate optimization error B
. 1 2 D S
min _H_Y—A(Z)HF —T|Ogdet2—|—2p>\(’2ij‘) : contraction
=0 | 2m = : :
& where 6 € (0, 1) is the contraction parameter.
m Assumptions on the non-convex penalty function py(-):
() pa(t) is non-decreasing on [0, +00) with py(0) = 0 and is differentiable on (0, +-00): Theorem 2: Under some standard assumptions, let x be a sub-Gaussian random
(i) 0< pl(tr) < p(t) < Afor all t > £ > 0 and limg_so p(£) = A: vector with mean zero and covariance X and {x, - be a coIIectlon of i.i.d.
(iii) There exists an a > 0 such that pj(t) = 0 for t > a\. Samp'es drawn from X, if \ = A/ log d [ — 2* S < 1 and
mn mn ~ mn’
MaxX
Prototypical examples of the non-convex penalty function p)(-): K 2 log(Ay/mn) 2 loglog d, then the e‘-optlmal solution X (K) satisfies
A, for0 <t <, S(K) N S
SACD: pi(t) = { B2t for A < t < b, HE — 27 S

0, for t > bA,

where b > 2 is an additional tuning parameter.

£ . . .
MCP: py () = sign (t) ) - / (1 _ i) dz Numerical Simulations
0 T

with high probability.

A\b
for some b > 0.

We use the MCP penalty, defined as

t]

Algorithm 1: Majorization-Minimization Based Multistage Convex Relaxation pa(t) = sign(t)A - /o (1 - %) dz,
Initialize 2" ° =/ with b = 2 across all trials. The regularization parameters 7 and A are selected
for k=1,2,..., K do via five-fold cross-validation. The ground-truth covariance matrix X is generated
update ffj’;l) = P'A(\E,S-k_l)\)J using the built-in sprandsym function in MATLAB with s nonzero entries. We draw
obtain 3 by solving n = 50 independent samples from the multivariate normal distribution A(0, X™),
and the noise variables 7); are sampled from a sub-exponential distribution with scale
i <« = Hy A(Z)|[p — 7 log det X + ZPA(‘ZU’) ’ parameter 7, i.e., 7; ~ v - N(0,1). To evaluate recovery performance, we measure
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the success probability as visualized in the color-coded matrix in Fig. (a). To reduce

k=k+1; : . . . . .
end for T the impact of limited sample size, we directly apply sketching to the true covariance
matrix ™. A recovery is considered successful if the relative Frobenius error satisfies
Algorithm 2: Proximal Newton Algorithm With Back-tracking Line Search 13— 3
F —3
Input ¥ AX ¢ ER <10".
Initialize t =0, X, = X* !, 1 =08, a =0.3 . . .
Repeat t : Fig. (b) compares the proposed estimator with the ¢1-norm-based method under a
pz .y € arg mir () + A6 3| consistent noise level ¥ = 107!. As the number of measurements increases, the
t ! " .
Ay 5 1 recovery error decreases, and our method consistently outperforms the /;-based esti-
t — t+5 - ts
mator.
0 = (VF(Z1), Ar) — [[A“O Zii + A" © (T + A)lu
6 ]_ q p— O, 0.5
Repeat °'O‘f
/8 ILI/q, q — q _I_ 17 0.35
If 3, + 5A, < 0 then -
continue: gojj
end ) 015
until F(Zt —+ BAt) S F(Et) + OéB(St 0-1
X=X+ A Ny . . . . . . . . .
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