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Background and Motivation

High-dimensional Streaming Data: Each time a snapshot of a data vector x ∈ Rd is generated, with d large.
Challenges in Modern Data Acquisition:

Data generation at unprecedented rate: data samples are 1) not observable due to privacy or security constraints; 2) distributed at multiple locations; 3) online generated on the fly and can
only be accessed once.
Limited processing power at sensor platforms: 1) time-sensitive: impossible to obtain a complete snapshot of the system; 2) storage-limited: cannot store the whole data set; 3)
power-hungry: minimize the number of observations.

Covariance Sketching: Key Observation: The covariance structure can be recovered without measuring the whole data stream.
Contribution: We propose a nonconvex problem with an efficient algorithm, which can be proved to attain the oracle statistical rate.

Sampling Model

Consider n independent observations {x t}n
t=1, each drawn from a zero-mean

random vector x with covariance matrix Σ∗. Given m sensing vectors {a i}m
i=1,

the quadratic measurement measurement yi , i = 1, . . . ,m, is given by
y = A⊗vec (S) + η = A (S) + η,

where y [y1, · · · , ym]
⊤, η [η1, · · · , ηm]

⊤ are additive measurement noises,
A⊗ =

[
(a1 ⊗ a1) · · · (am ⊗ am)

]⊤ and vec (S) denotes the vectorization of S
obtained by stacking its columns, and A : Rd×d 7→ Rm is a linear operator.
Assumptions:

The sensing vectors {a i}m
i=1 are i.i.d. sub-Gaussian random variables with zero mean and

identity covariance.
The measurement noises {ηi}m

i=1 are i.i.d. sub-exponential random variables with mean 0
and variance proxy σ2.

Problem Formulation

We propose to estimate the sparse covariance matrices from quadratic measurements using
the non-convex penalty

min
Σ≻0

 1
2m ∥y −A(Σ)∥2

F − τ log detΣ +
∑

i ,j
pλ(|Σij|)

 .

Assumptions on the non-convex penalty function pλ(·):
(i) pλ(t) is non-decreasing on [0,+∞) with pλ(0) = 0 and is differentiable on (0,+∞);
(ii) 0 ≤ p′

λ(t1) ≤ p′
λ(t2) ≤ λ for all t1 ≥ t2 ≥ 0 and limt→0 p′

λ(t) = λ;
(iii) There exists an α > 0 such that p′

λ(t) = 0 for t ≥ αλ.

Prototypical examples of the non-convex penalty function pλ(·):

SACD: p′
λ (t) =


λ, for 0 < t ≤ λ,
bλ−t
b−1 , for λ ≤ t ≤ bλ,
0, for t ≥ bλ,

where b > 2 is an additional tuning parameter.

MCP: pλ (t) = sign (t)λ ·
∫ |t|

0

(
1 − z

λb

)
+

dz

for some b > 0.
Algorithm

Algorithm 1: Majorization-Minimization Based Multistage Convex Relaxation
Initialize Σ̃

(0)
= I

for k = 1, 2, . . . ,K do
update Λ

(k−1)
ij = p′

λ(|Σ̃
(k−1)
ij |);

obtain Σ̃
(k)

by solving

min
Σ≻0

 1
2m ∥y −A(Σ)∥2

F − τ log detΣ +
∑

i ,j
pλ(|Σij|)

 ,

k = k + 1;
end for.

Algorithm 2: Proximal Newton Algorithm With Back-tracking Line Search
Input Σk−1, Λk, ε
Initialize t = 0, Σt = Σk−1, µ = 0.8, α = 0.3
Repeat

Σt+1
2
∈ arg min

Σ≻0
f̃t (Σ) + ∥Λ⊙Σ∥1;

∆t = Σt+1
2
−Σt;

δt = ⟨∇f (Σt),∆t⟩ − ∥Λk ⊙Σt∥1 + ∥Λk ⊙ (Σt +∆t)∥1;
β = 1, q = 0;
Repeat

β = µq, q = q + 1;
If Σt + β∆t ⪯ 0 then

continue;
end

until F̄ (Σt + β∆t) ≤ F̄ (Σt) + αβδt
Σt+1 = Σt + β∆t;
t = t + 1;

until maxi ,j

∣∣∣(∇f (Σt+1) +Λk ⊙Ξk)
ij

∣∣∣ ≤ ε

Output: ΣK = Σt+1

Main Results
Essential Assumptions:

The true covariance matrix Σ⋆ satisfies
0 <

1
κ
≤ λmin (Σ

⋆) ≤ λmax (Σ
⋆) ≤ κ < ∞,

for some constant κ ≥ 1.
There exist universal constants α and µ such that

∥Σ⋆
S∥min = min

(i ,j)∈S

∣∣Σ⋆
ij
∣∣ ≥ (α + µ)λ,

where µ ∈ (0, α) satisfies p′
λ (µλ) ≥ λ

2.

Theorem 1: Let S =
{
(i , j)

∣∣ Σ⋆
ij ̸= 0

}
and |S| = s.

Define f (Σ) = 1
2m ∥y −A(Σ)∥2

F − τ log detΣ.
Under some standard assumptions, the ε-optimal solution Σ̃(k) (1 ≤ k ≤ K )
satisfies the following contraction property:∥∥∥∥Σ̃(k)

−Σ⋆

∥∥∥∥
F
≤ 1

ρ

∥(∇f (Σ⋆))S∥F︸ ︷︷ ︸
oracle rate

+ ε
√

s︸︷︷︸
optimization error

 + δ

∥∥∥∥Σ̃(k−1)
−Σ⋆

∥∥∥∥
F︸ ︷︷ ︸

contraction

,

where δ ∈ (0, 1) is the contraction parameter.

Theorem 2: Under some standard assumptions, let x be a sub-Gaussian random
vector with mean zero and covariance Σ⋆ and {x i}n

i=1 be a collection of i.i.d.
samples drawn from x, if λ ≍

√
log d
mn , τ ≲

√
1

mn

∥∥∥(Σ⋆)−1
∥∥∥−1

max
, ε ≲

√
1

mn, and
K ≳ log(λ

√
mn) ≳ log log d , then the ε-optimal solution Σ̃(K ) satisfies∥∥∥Σ̃(K ) −Σ⋆

∥∥∥
F
≲

√
s

mn
with high probability.

Numerical Simulations

We use the MCP penalty, defined as

pλ(t) = sign(t)λ ·
∫ |t|

0

(
1 − z

λb

)
+

dz ,

with b = 2 across all trials. The regularization parameters τ and λ are selected
via five-fold cross-validation. The ground-truth covariance matrix Σ⋆ is generated
using the built-in sprandsym function in MATLAB with s nonzero entries. We draw
n = 50 independent samples from the multivariate normal distribution N (0,Σ⋆),
and the noise variables ηi are sampled from a sub-exponential distribution with scale
parameter γ, i.e., ηi ∼ γ · N (0, 1). To evaluate recovery performance, we measure
the success probability as visualized in the color-coded matrix in Fig. (a). To reduce
the impact of limited sample size, we directly apply sketching to the true covariance
matrix Σ⋆. A recovery is considered successful if the relative Frobenius error satisfies

∥Σ −Σ⋆∥F
∥Σ⋆∥F

≤ 10−3.

Fig. (b) compares the proposed estimator with the ℓ1-norm-based method under a
consistent noise level γ = 10−1. As the number of measurements increases, the
recovery error decreases, and our method consistently outperforms the ℓ1-based esti-
mator.
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(a) The rate of successful covariance
reconstruction when d = 100.
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(b) The FRE of the estimated covariance
matrices for different sparsity levels with
γ = 10−1

Wenbin Wang and Ziping Zhao Email: {wangwb2023@shanghaitech.edu.cn; zipingzhao@shanghaitech.edu.cn}


