Optimal Compressive Covariance Sketching via Rank-One Sampling

Wenbin Wang and Ziping Zhao School of Information Science and Technology, ShanghaiTech University, Shanghai, China

Background and Motivation

- **High-dimensional Streaming Data:** Each time a snapshot of a data vector $x \in \mathbb{R}^d$ is generated, with d large.
- Challenges in Modern Data Acquisition:
 - Data generation at unprecedented rate: data samples are 1) not observable due to privacy or security constraints; 2) distributed at multiple locations; 3) online generated on the fly and can only be accessed once.
 - Limited processing power at sensor platforms: 1) time-sensitive: impossible to obtain a complete snapshot of the system; 2) storage-limited: cannot store the whole data set; 3) power-hungry: minimize the number of observations.
- **Covariance Sketching:** Key Observation: The covariance structure can be recovered without measuring the whole data stream.
- Contribution: We propose a nonconvex problem with an efficient algorithm, which can be proved to attain the oracle statistical rate.

Sampling Model

Consider *n* independent observations $\{\boldsymbol{x}_t\}_{t=1}^n$, each drawn from a zero-mean random vector \boldsymbol{x} with covariance matrix $\boldsymbol{\Sigma}^*$. Given *m* sensing vectors $\{\boldsymbol{a}_i\}_{i=1}^m$, the quadratic measurement measurement y_i , $i = 1, \ldots, m$, is given by $\boldsymbol{y} = \boldsymbol{A}_{\otimes} \operatorname{vec}(\boldsymbol{S}) + \boldsymbol{\eta} = \mathcal{A}(\boldsymbol{S}) + \boldsymbol{\eta}$,

Main Results

Essential Assumptions:

The true covariance matrix Σ^* satisfies $0 < \frac{1}{\kappa} \le \lambda_{\min}(\Sigma^*) \le \lambda_{\max}(\Sigma^*) \le \kappa < \infty,$

where $\boldsymbol{y} [\boldsymbol{y}_1, \dots, \boldsymbol{y}_m]^\top$, $\boldsymbol{\eta} [\eta_1, \dots, \eta_m]^\top$ are additive measurement noises, $\boldsymbol{A}_{\otimes} = [(\boldsymbol{a}_1 \otimes \boldsymbol{a}_1) \cdots (\boldsymbol{a}_m \otimes \boldsymbol{a}_m)]^\top$ and $\operatorname{vec}(\boldsymbol{S})$ denotes the vectorization of \boldsymbol{S} obtained by stacking its columns, and $\mathcal{A} : \mathbb{R}^{d \times d} \mapsto \mathbb{R}^m$ is a linear operator.

- Assumptions:
 - The sensing vectors { a_i}^m_{i=1} are i.i.d. sub-Gaussian random variables with zero mean and identity covariance.
 - The measurement noises $\{\eta_i\}_{i=1}^m$ are i.i.d. sub-exponential random variables with mean 0 and variance proxy σ^2 .

Problem Formulation

We propose to estimate the sparse covariance matrices from quadratic measurements using the non-convex penalty

$$\min_{\boldsymbol{\varSigma}\succ \mathbf{0}} \left\{ \frac{1}{2m} \| \boldsymbol{y} - \mathcal{A}(\boldsymbol{\varSigma}) \|_{\mathrm{F}}^2 - \tau \log \det \boldsymbol{\varSigma} + \sum_{i,j} p_{\lambda}(|\boldsymbol{\varSigma}_{ij}|) \right\}.$$

• Assumptions on the non-convex penalty function $p_{\lambda}(\cdot)$:

(i) p_λ(t) is non-decreasing on [0, +∞) with p_λ(0) = 0 and is differentiable on (0, +∞);
(ii) 0 ≤ p'_λ(t₁) ≤ p'_λ(t₂) ≤ λ for all t₁ ≥ t₂ ≥ 0 and lim_{t→0} p'_λ(t) = λ;
(iii) There exists an α > 0 such that p'_λ(t) = 0 for t ≥ αλ.

Prototypical examples of the non-convex penalty function $p_{\lambda}(\cdot)$:

 $\int \lambda$, for $0 < t \leq \lambda$,

- for some constant $\kappa \geq 1$.
- \blacksquare There exist universal constants α and μ such that

$$\|\boldsymbol{\Sigma}_{\mathcal{S}}^{\star}\|_{\min} = \min_{(i,j)\in\mathcal{S}} |\boldsymbol{\Sigma}_{ij}^{\star}| \ge (\alpha + \mu) \lambda,$$

where $\mu \in (0, \alpha)$ satisfies $p_{\lambda}'(\mu\lambda) \ge \frac{\lambda}{2}$.

Shanghai

Theorem 1: Let
$$S = \{(i,j) \mid \Sigma_{ij}^* \neq 0\}$$
 and $|S| = s$.
Define $f(\Sigma) = \frac{1}{2m} ||\mathbf{y} - \mathcal{A}(\Sigma)||_{\mathrm{F}}^2 - \tau \log \det \Sigma$.

Under some standard assumptions, the ε -optimal solution $\widetilde{\Sigma}^{(k)}$ $(1 \leq k \leq K)$ satisfies the following contraction property:

$$\left\|\widetilde{\boldsymbol{\Sigma}}^{(k)} - \boldsymbol{\Sigma}^{\star}\right\|_{\mathrm{F}} \leq \frac{1}{\rho} \left(\underbrace{\left\| (\nabla f(\boldsymbol{\Sigma}^{\star}))_{\mathcal{S}} \right\|_{\mathrm{F}}}_{\text{oracle rate}} + \underbrace{\varepsilon \sqrt{s}}_{\text{optimization error}} \right) + \underbrace{\delta \left\| \widetilde{\boldsymbol{\Sigma}}^{(k-1)} - \boldsymbol{\Sigma}^{\star} \right\|_{\mathrm{F}}}_{\text{contraction}},$$

where $\delta \in (0, 1)$ is the contraction parameter.

Theorem 2: Under some standard assumptions, let \boldsymbol{x} be a sub-Gaussian random vector with mean zero and covariance $\boldsymbol{\Sigma}^*$ and $\{\boldsymbol{x}_i\}_{i=1}^n$ be a collection of i.i.d. samples drawn from \boldsymbol{x} , if $\lambda \asymp \sqrt{\frac{\log d}{mn}}$, $\tau \lesssim \sqrt{\frac{1}{mn}} \left\| (\boldsymbol{\Sigma}^*)^{-1} \right\|_{\max}^{-1}$, $\varepsilon \lesssim \sqrt{\frac{1}{mn}}$, and $K \gtrsim \log(\lambda \sqrt{mn}) \gtrsim \log \log d$, then the ε -optimal solution $\boldsymbol{\Sigma}^{(K)}$ satisfies

SACD:
$$p'_{\lambda}(t) = \begin{cases} \frac{b\lambda-t}{b-1}, & \text{for } \lambda \leq t \leq b\lambda, \\ 0, & \text{for } t \geq b\lambda, \end{cases}$$

where b > 2 is an additional tuning parameter.

MCP:
$$p_{\lambda}(t) = \operatorname{sign}(t) \lambda \cdot \int_{0}^{|t|} \left(1 - \frac{z}{\lambda b}\right)_{+} dz$$

for some b > 0.

Algorithm

Algorithm 1: Majorization-Minimization Based Multistage Convex Relaxation

for
$$k = 1, 2, ..., K$$
 do
update $\Lambda_{ij}^{(k-1)} = p'_{\lambda}(|\widetilde{\Sigma}_{ij}^{(k-1)}|);$
obtain $\widetilde{\Sigma}^{(k)}$ by solving

$$\min_{\Sigma \succ 0} \left\{ \frac{1}{2m} \| \mathbf{y} - \mathcal{A}(\Sigma) \|_{\mathrm{F}}^{2} - \tau \log \det \Sigma + \sum_{i,j} p_{\lambda}(|\Sigma_{ij}|) \right\},$$

$$k = k + 1;$$

and for.

Algorithm 2: Proximal Newton Algorithm With Back-tracking Line Search

Input Σ^{k-1} , Λ^k , ε Initialize t = 0, $\Sigma_t = \Sigma^{k-1}$, $\mu = 0.8$, $\alpha = 0.3$ $\left\|\widetilde{\boldsymbol{\Sigma}}^{(K)}-\boldsymbol{\Sigma}^{\star}\right\|_{F}\lesssim\sqrt{\frac{s}{mn}}$

with high probability.

Numerical Simulations

We use the MCP penalty, defined as

 $p_{\lambda}(t) = \operatorname{sign}(t)\lambda \cdot \int_{0}^{|t|} \left(1 - \frac{z}{\lambda b}\right)_{+} dz,$

with b = 2 across all trials. The regularization parameters τ and λ are selected via five-fold cross-validation. The ground-truth covariance matrix Σ^* is generated using the built-in sprandsym function in MATLAB with *s* nonzero entries. We draw n = 50 independent samples from the multivariate normal distribution $\mathcal{N}(0, \Sigma^*)$, and the noise variables η_i are sampled from a sub-exponential distribution with scale parameter γ , i.e., $\eta_i \sim \gamma \cdot \mathcal{N}(0, 1)$. To evaluate recovery performance, we measure the success probability as visualized in the color-coded matrix in Fig. (a). To reduce the impact of limited sample size, we directly apply sketching to the true covariance matrix Σ^* . A recovery is considered successful if the relative Frobenius error satisfies

$$rac{\left\| \boldsymbol{\varSigma} - \boldsymbol{\varSigma}^{\star}
ight\|_{\mathrm{F}}}{\left\| \boldsymbol{\varSigma}^{\star}
ight\|_{\mathrm{F}}} \leq 10^{-3}.$$

Fig. (b) compares the proposed estimator with the ℓ_1 -norm-based method under a

Repeat

$$\begin{split} \boldsymbol{\Sigma}_{t+\frac{1}{2}} \in \arg\min_{\boldsymbol{\Sigma}\succ\boldsymbol{0}} \widetilde{f}_t(\boldsymbol{\Sigma}) + \|\boldsymbol{\Lambda}\odot\boldsymbol{\Sigma}\|_1; \\ \boldsymbol{\Delta}_t &= \boldsymbol{\Sigma}_{t+\frac{1}{2}} - \boldsymbol{\Sigma}_t; \\ \boldsymbol{\delta}_t &= \langle \nabla f(\boldsymbol{\Sigma}_t), \boldsymbol{\Delta}_t \rangle - \|\boldsymbol{\Lambda}^k \odot \boldsymbol{\Sigma}_t\|_1 + \|\boldsymbol{\Lambda}^k \odot (\boldsymbol{\Sigma}_t + \boldsymbol{\Delta}_t)\|_1; \\ \boldsymbol{\beta} &= 1, \ \boldsymbol{q} = 0; \\ \textbf{Repeat} \\ \boldsymbol{\beta} &= \mu^q, \ \boldsymbol{q} &= \boldsymbol{q} + 1; \\ \textbf{If } \boldsymbol{\Sigma}_t + \boldsymbol{\beta}\boldsymbol{\Delta}_t \leq \boldsymbol{0} \text{ then} \\ \text{ continue;} \\ \textbf{end} \\ \textbf{until } \overline{F}(\boldsymbol{\Sigma}_t + \boldsymbol{\beta}\boldsymbol{\Delta}_t) \leq \overline{F}(\boldsymbol{\Sigma}_t) + \alpha \boldsymbol{\beta} \boldsymbol{\delta}_t \\ \boldsymbol{\Sigma}_{t+1} &= \boldsymbol{\Sigma}_t + \boldsymbol{\beta}\boldsymbol{\Delta}_t; \\ \boldsymbol{t} &= t + 1; \\ \textbf{until } \max_{i,j} \left| (\nabla f(\boldsymbol{\Sigma}_{t+1}) + \boldsymbol{\Lambda}^k \odot \boldsymbol{\Xi}^k)_{ij} \right| \leq \varepsilon \\ \textbf{Output: } \boldsymbol{\Sigma}^K &= \boldsymbol{\Sigma}_{t+1} \end{split}$$

consistent noise level $\gamma = 10^{-1}$. As the number of measurements increases, the recovery error decreases, and our method consistently outperforms the ℓ_1 -based estimator.

Wenbin Wang and Ziping Zhao