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High-dimensional Streaming Data
Each time a snapshot of a data vector & € R? is generated, with d large.
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(a) Internet monitoring® (b) Wireless health monitoring? (c) YouTube ranking®

https:/ /www.epitiro.com/
2 Jovanov, Emil, et al. "A wireless body area network of intelligent motion sensors for computer assisted

physical rehabilitation.” Journal of NeuroEngineering and rehabilitation 2.1 (2005): 6.

3https:/ /incartmarketing.com/youtube-ranking-how-to-get-more-views-on-youtube/
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Challenges in Modern Data Acquisition

Data generation at unprecedented rate: data samples are

® not observable due to privacy or security constraints;

e distributed at multiple locations;

® online generated on the fly and can only be accessed once.
Limited processing power at sensor platforms:

® time-sensitive: impossible to obtain a complete snapshot of the system;

® storage-limited: cannot store the whole data set;

® power-hungry: minimize the number of observations.

Unprecedented Data Rate and Volume Limited Power and Storage
2. - S

Figure 1: Mismatch streaming*

“https:/ /users.ece.cmu.edu/ yuejiec/GeometricConstraints.html
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Covariance Sketching

Key Observation: The covariance structure can be recovered without measuring the whole
data stream.
Applications of covariance sketching:
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(a) Genetic Biology (b) Radar System (c) Portfolio Optimization
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Quadratic Sketching for Covariance Estimation
Consider a data stream possibly distributedly observed at m sensors:

(!"»!
Quadratic Sketching: For each sensor i =1,--- ,m:
e randomly select a sketching vector a; € R? with i.i.d. sub-Gaussian entries;

® Sketching n independent observations {x;}?_, with an energy measurement |a'x|? and
aggregate the average energy measurement®:

I~ o7 2 T
ZEZ‘%-”H‘ +77i:<aiaia5>+m
=1

5Since only finite samples are available, we have S = X* + E with E a bias term.
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Related Work |

The sparsity assumption: a majority of the off-diagonal elements of 3* are zero or nearly so. J

® Positive definite non-convex penalized covariance estimator (Quan 2023)

o . 1 2
3 = argmin 2IIE—SIIF—TlogdetZJr;PA(IEz’j!)
i#]

is always positive definite,
is easy to obtain by iterative algorithm due to its convexity,

@ need the full data samples.
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Sampling Model

Consider n independent observations {x;}," ;, each drawn from a zero-mean random vector x
with covariance matrix X*. Given m sensing vectors {a;};-, the quadratic measurement
measurement y;, 1 = 1,...,m, is given by

y=Agvec(S)+n=A(S)+n,

where y == [y1, - - - ,ym}T, n=n, - ,nm]T are additive measurement noises,
Ag =] (@ ®a) - (am®an) ]T and vec (S) denotes the vectorization of S obtained

by stacking its columns, and A : R¥*¢ — R™ is a linear operator.

® The sensing vectors {a;}" are i.i.d. sub-Gaussian random variables with zero mean and
identity covariance.

® The measurement noises {7;};~ are i.i.d. sub-exponential random variables with mean 0
and variance proxy o2.
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Problem Formulation

® \We propose to estimate the sparse covariance matrices from quadratic measurements
using the non-convex penalty

. 1 2
min ¢ oy — A(Z)[? - 7log det 3 + Zm(lﬂijl)
]

® Assumptions on the non-convex penalty function py(-):

(i) pa(t) is non-decreasing on [0, 4+o00) with px(0) = 0 and is differentiable on (0, +oc0);
(i) 0 < ph\(t1) < pP\(t2) < Aforall t1 >ty >0 and limy_,o i () = A;
(iii) There exists an a > 0 such that p) (t) = 0 for t > aA.

Prototypical examples of the non-convex penalty function py(-): SCAD and MCP
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Challenges
. 1 2
g;% 2mHy—A(Z‘)HF—TlogdetE—i-ZZj:p)\(\EijD

® |t is a non-convex problem.

e |f we directly apply an iterative algorithm, e.g., coordinate descent (Rothman 2012),

® the global optimum may not be obtainable,

® the local optimums are in general hard to be characterized.

Question: how to develop numerical algorithms with provable statistical guarantees?

J
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Optimization Algorithm

Algorithm 1: Majorization-Minimization Based Multistage Convex Relaxation
Initialize X(©) = I
for k=1,2,...,K do

update F/vlgffl) = pg\(\Ei(f*l)D;

obtain () by solving

. 1 2
min %IIy—A(E)IIF—TlogdetEJr;px(IEnI) :

k=k+1;
end for.

® Due to numerical optimization error in practice, we can only compute an approximate
solution (e-optimal solution) X instead of the optimal solution to each subproblem.
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Algorithm lllustration
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® Qur algorithm can guarantee that an approximate local optimum enjoys the optimal
statistical property.
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Essential Assumptions
® The true covariance matrix X* satisfies

1
0<— S Amin (Z*) S )\max (2*) S K < 00,
%

for some constant xk > 1.
® There exist universal constants a and p such that

125

min

= min ‘Z | > (a+p) A,
(J)

where 11 € (0, ) satisfies p (u)) > 3.
¢ Restricted Strong Convexity (RSC) & Restricted Strong Smoothness (RSS): For
the function f, there exists some oo > p™ > p~ > 0 such that, for all A € B (Z‘*

) ATk

f(Z+4)z7(2)+(Vf(¥), >+7||AHF’ (1)

f(Z+4)<f(Z)+(Vf(Y), >+7||AHF (@)



Theoretical Results |
Let S = {(z‘,j) | =5 # o} and |S| = s. Define f(£) = 2L |ly — A(2)|z - 7 log det 2.

Theorem 1 (contraction property)

Under some standard assumptions, with probability exceeding 1 — c¢; exp(—cam) for some
c1,¢o > 0, then the e-optimal solution X*) (1 < k < K ) satisfies the following contraction

property:

1 ~ _
< — | I(VF(EN)sllg + eV/'s 44 H (k=1) _ yox
P\ —_————— N

oracle rate optimization error

jp- =

F F’

e .
contraction

where § € (0,1) is the contraction parameter, provided that m = O((s + s°) log?(d/(s + 5°)))
with s® > (s for some universal constant (.
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Theoretical Results |l

Corollary 2 (oracle rate)

Under some standard assumptions, let x be a sub-Gaussian random vector with mean zero and
logd

mn ’

—i
(Z‘*)_leaX, £ S/, and K 2 log(A\\/mn) 2 loglogd, then the c-optimal

solution XK) satisfies

covariance X* and {x;};_, be a collection of i.i.d. samples drawn from x, if X <

T
~ mn

5 S

jg- =
F mn

with high probability.

® The oracle rate refers to the statistical convergence rate of the oracle estimator, defined as
YO = argminy. =0 f(X), which knows the true coefficients in advance. By the mean

value theorem, it is easy to obtain that | X° — X*||p < ||(Vf(Z*)) )slle S V-
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Numerical Experiments |
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Figure 2: The FRE of the estimated covariance matrices is examined in three distinct scenarios: (a) the
true covariance without added noise; (b) the sample covariance with a noise parameter of v = 0.1 and
n = 50; (c) the sample covariance with a noise parameter of v = 0.1 and m = 300;
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Figure 3: The oracle rate of
“sprandsym’ Matrix with
s =120 and v =0.1.
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Figure 4: The FRE of the
estimated covariance matrices
for different noise levels when
s = 300.

Numerical Experiments ||
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Figure 5: The FRE of the
estimated covariance matrices for
different sparsity levels with noise
level v = 1071(¢; v.s. MCP).
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Numerical Experiments IlI
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Figure 6: The rate of successful covariance reconstruction when d = 100.
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Conclusion

® \We have proposed a novel approach for large sparse covariance matrix estimation from
quadratic measurements using the non-convex penalty and presented both the theoretical
and empirical results.

® To the best of our knowledge, this is the first work to obtain the optimal statistical
rate for large sparse covariance matrix estimation from quadratic measurements.
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