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High-dimensional Streaming Data
Each time a snapshot of a data vector x ∈ Rd is generated, with d large.

(a) Internet monitoring1 (b) Wireless health monitoring2 (c) YouTube ranking3

1https://www.epitiro.com/
2Jovanov, Emil, et al. ”A wireless body area network of intelligent motion sensors for computer assisted

physical rehabilitation.” Journal of NeuroEngineering and rehabilitation 2.1 (2005): 6.
3https://incartmarketing.com/youtube-ranking-how-to-get-more-views-on-youtube/
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Challenges in Modern Data Acquisition
Data generation at unprecedented rate: data samples are
• not observable due to privacy or security constraints;
• distributed at multiple locations;
• online generated on the fly and can only be accessed once.

Limited processing power at sensor platforms:
• time-sensitive: impossible to obtain a complete snapshot of the system;
• storage-limited: cannot store the whole data set;
• power-hungry: minimize the number of observations.

Figure 1: Mismatch streaming4

4https://users.ece.cmu.edu/ yuejiec/GeometricConstraints.html
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Covariance Sketching
Key Observation: The covariance structure can be recovered without measuring the whole
data stream.
Applications of covariance sketching:

(a) Genetic Biology (b) Radar System (c) Portfolio Optimization
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Quadratic Sketching for Covariance Estimation
Consider a data stream possibly distributedly observed at m sensors:

Quadratic Sketching: For each sensor i = 1, · · · ,m:
• randomly select a sketching vector ai ∈ Rd with i.i.d. sub-Gaussian entries;
• Sketching n independent observations {xt}nt=1 with an energy measurement |a⊤x|2 and

aggregate the average energy measurement5:

yi =
1

n

n∑
t=1

∣∣∣a⊤
i xt

∣∣∣2 + ηi =
〈
aia

⊤
i ,S

〉
+ ηi

5Since only finite samples are available, we have S = Σ⋆ +E with E a bias term.
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Related Work I

The sparsity assumption: a majority of the off-diagonal elements of Σ∗ are zero or nearly so.

• Positive definite non-convex penalized covariance estimator (Quan 2023)

Σ̂ = arg min
Σ≻0

1

2
∥Σ − S∥2F − τ log detΣ +

∑
i ̸=j

pλ(|Σij |)


, is always positive definite,

, is easy to obtain by iterative algorithm due to its convexity,

/ need the full data samples.
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Sampling Model

Consider n independent observations {xt}nt=1, each drawn from a zero-mean random vector x
with covariance matrix Σ∗. Given m sensing vectors {ai}mi=1, the quadratic measurement
measurement yi, i = 1, . . . ,m, is given by

y = A⊗vec (S) + η = A (S) + η,

where y := [y1, · · · , ym]⊤, η := [η1, · · · , ηm]⊤ are additive measurement noises,
A⊗ =

[
(a1 ⊗ a1) · · · (am ⊗ am)

]⊤ and vec (S) denotes the vectorization of S obtained
by stacking its columns, and A : Rd×d 7→ Rm is a linear operator.
Additional assumptions:

• The sensing vectors {ai}mi=1 are i.i.d. sub-Gaussian random variables with zero mean and
identity covariance.

• The measurement noises {ηi}mi=1 are i.i.d. sub-exponential random variables with mean 0
and variance proxy σ2.
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Problem Formulation

• We propose to estimate the sparse covariance matrices from quadratic measurements
using the non-convex penalty

min
Σ≻0

 1

2m
∥y −A(Σ)∥2F − τ log detΣ +

∑
i,j

pλ(|Σij |)

 .

• Assumptions on the non-convex penalty function pλ(·):

(i) pλ(t) is non-decreasing on [0,+∞) with pλ(0) = 0 and is differentiable on (0,+∞);

(ii) 0 ≤ p′λ(t1) ≤ p′λ(t2) ≤ λ for all t1 ≥ t2 ≥ 0 and limt→0 p
′
λ(t) = λ;

(iii) There exists an α > 0 such that p′λ(t) = 0 for t ≥ αλ.

Prototypical examples of the non-convex penalty function pλ(·): SCAD and MCP
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Challenges

min
Σ≻0

 1

2m
∥y −A(Σ)∥2F − τ log detΣ +

∑
i,j

pλ(|Σij |)

 .

• It is a non-convex problem.

• If we directly apply an iterative algorithm, e.g., coordinate descent (Rothman 2012),

• the global optimum may not be obtainable,

• the local optimums are in general hard to be characterized.

Question: how to develop numerical algorithms with provable statistical guarantees?
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Optimization Algorithm

Algorithm 1: Majorization-Minimization Based Multistage Convex Relaxation

Initialize Σ̃(0) = I

for k = 1, 2, . . . ,K do
update Λ

(k−1)
ij = p′λ(|Σ̃

(k−1)
ij |);

obtain Σ̃(k) by solving

min
Σ≻0

 1

2m
∥y −A(Σ)∥2F − τ log detΣ +

∑
i,j

pλ(|Σij |)

 ,

k = k + 1;
end for.

• Due to numerical optimization error in practice, we can only compute an approximate
solution (ε-optimal solution) Σ̃ instead of the optimal solution to each subproblem.
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Algorithm Illustration

Σ̃ (0)

Σ̃ (1)

Σ̃ (2)

Σ̃ (K)

Σ*

Initial point

Output solution to 

the 1st subproblem

Output solution to 

the 2nd subproblem

Output solution to 

the K-th subproblem

…

• Our algorithm can guarantee that an approximate local optimum enjoys the optimal
statistical property.
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Essential Assumptions
• The true covariance matrix Σ⋆ satisfies

0 <
1

κ
≤ λmin (Σ

⋆) ≤ λmax (Σ
⋆) ≤ κ < ∞,

for some constant κ ≥ 1.
• There exist universal constants α and µ such that

∥Σ⋆
S∥min = min

(i,j)∈S

∣∣Σ⋆
ij

∣∣ ≥ (α+ µ)λ,

where µ ∈ (0, α) satisfies p′λ (µλ) ≥
λ
2 .

• Restricted Strong Convexity (RSC) & Restricted Strong Smoothness (RSS): For
the function f , there exists some ∞ > ρ+ > ρ− > 0 such that, for all ∆ ∈ B

(
Σ⋆, ρ−

4τκ

)
,

f (Σ +∆) ≥ f (Σ) + ⟨∇f (Σ) ,∆⟩+ ρ−

2
∥∆∥F , (1)

f (Σ +∆) ≤ f (Σ) + ⟨∇f (Σ) ,∆⟩+ ρ+

2
∥∆∥F . (2)
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Theoretical Results I

Let S =
{
(i, j)

∣∣ Σ⋆
ij ̸= 0

}
and |S| = s. Define f(Σ) = 1

2m ∥y −A(Σ)∥2F − τ log detΣ.

Theorem 1 (contraction property)
Under some standard assumptions, with probability exceeding 1− c1 exp(−c2m) for some
c1, c2 > 0, then the ε-optimal solution Σ̃(k) (1 ≤ k ≤ K) satisfies the following contraction
property:

∥∥∥Σ̃(k) −Σ⋆
∥∥∥
F
≤ 1

ρ

∥(∇f(Σ⋆))S∥F︸ ︷︷ ︸
oracle rate

+ ε
√
s︸︷︷︸

optimization error

+ δ
∥∥∥Σ̃(k−1) −Σ⋆

∥∥∥
F︸ ︷︷ ︸

contraction

,

where δ ∈ (0, 1) is the contraction parameter, provided that m = O((s+ s⋄) log2(d/(s+ s⋄)))
with s⋄ ≥ βs for some universal constant β.
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Theoretical Results II

Corollary 2 (oracle rate)
Under some standard assumptions, let x be a sub-Gaussian random vector with mean zero and

covariance Σ⋆ and {xi}ni=1 be a collection of i.i.d. samples drawn from x, if λ ≍
√

log d
mn ,

τ ≲
√

1
mn

∥∥∥(Σ⋆)−1
∥∥∥−1

max
, ε ≲

√
1

mn , and K ≳ log(λ
√
mn) ≳ log log d, then the ε-optimal

solution Σ̃(K) satisfies ∥∥∥Σ̃(K) −Σ⋆
∥∥∥
F
≲

√
s

mn

with high probability.

• The oracle rate refers to the statistical convergence rate of the oracle estimator, defined as
Σ̂O = argminΣ:ΣS=0 f(Σ), which knows the true coefficients in advance. By the mean
value theorem, it is easy to obtain that ∥Σ̂O −Σ⋆∥F ≲ ∥(∇f(Σ⋆))S∥F ≲

√
s

mn .
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Numerical Experiments I
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Figure 2: The FRE of the estimated covariance matrices is examined in three distinct scenarios: (a) the
true covariance without added noise; (b) the sample covariance with a noise parameter of γ = 0.1 and
n = 50; (c) the sample covariance with a noise parameter of γ = 0.1 and m = 300;
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Numerical Experiments II
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Figure 3: The oracle rate of
“sprandsym” Matrix with
s = 120 and γ = 0.1.
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Figure 4: The FRE of the
estimated covariance matrices
for different noise levels when
s = 300.
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Figure 5: The FRE of the
estimated covariance matrices for
different sparsity levels with noise
level γ = 10−1(ℓ1 v.s. MCP).
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Numerical Experiments III
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Figure 6: The rate of successful covariance reconstruction when d = 100.
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Conclusion

• We have proposed a novel approach for large sparse covariance matrix estimation from
quadratic measurements using the non-convex penalty and presented both the theoretical
and empirical results.

• To the best of our knowledge, this is the first work to obtain the optimal statistical
rate for large sparse covariance matrix estimation from quadratic measurements.
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Thank you!
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