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Compressed Sensing

Classic Framework:

yi = a⊤
i x, i = 1, . . . ,m,

where {ai}mi=1 are the sketching/sensing vectors, x is the data/signal, {yi}mi=1 are the
measurements.

(a) Magnetic Resonance Imaging (b) Image Denoising (c) Robust Face Recognition

2 / 28



Challenges in Modern Data Acquisition
Data generation at unprecedented rate: data samples are
• high-dimensional (dimension ≫ date number);
• not observable due to privacy or security constraints;
• distributed at multiple locations.

Limited processing power at sensor platforms:
• time-sensitive: impossible to obtain a complete snapshot of the system;
• storage-limited: cannot store the whole data set;
• power-hungry: minimize the number of observations.

Figure 1: Mismatch streaming1

1https://yuejiechi.github.io/GeometricConstraints.html
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Bilinear Matrix Sketching

Y︸︷︷︸
observation

= A︸︷︷︸
measurement matrix

X︸︷︷︸
unknown

B⊤︸︷︷︸
measurement matrix

+ E︸︷︷︸
noise

.

Y ,E ∈ Rm×m, X ∈ Rd×d, A,B ∈ Rm×d, m ≪ d.

Why Bilinear? Why Matrix? Why low-rank?
Application-driven
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Covariance Sketching
Consider two data x,x′ possibly distributedly observed at m sensors:

x1

x2

x3

...

x′1

x′2

x′3
...

Bilinear Sketching:
• two sketching matrices A,B ∈ Rm×d with specific distribution;
• two observations z = Ax and z′ = Bx′ with the cross-covariance matrix of the sketches:

E(zz′⊤) = A X⋆︸︷︷︸
E(xx′⊤)

B
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Graph Sketching

Consider a directed graph G with d nodes with adjacency matrix X.
• First, we consider Y = AXA⊤

• Define A ∈ Rm×d as composed of i.i.d. Bernoulli entries such as

Au,i =

{
1, if i ∈ u,

0, otherwise.

• Then,

Yu,v =

d−1∑
i=0

d−1∑
j=0

Au,iXi,j Av,j
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Illustration of Graph Sketching

X =



0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1
1 0 0 0 1 0 0 0
1 1 0 0 1 1 1 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0



 5

 7

 0

 1
 3

 6

 4

 2

Figure 2: Original Graph: X
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Illustration of Graph Sketching

X =
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1 0 0 0 1 0 0 0
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A =


0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1
1 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0



 5
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 0

 1
 3

 6

 4

 2

Figure 3: Original Graph: X
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Illustration of Graph Sketching

Y =


0 0 1 1
0 0 4 2
1 2 2 0
0 0 2 0



 2

 0

 3

 1

 2

 1
 1  2

 4

 2

 2

 1

Figure 4: Compressed Graph: Y
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Graph Sketching

Consider a directed graph G with d nodes with adjacency matrix X.
• Now, we consider Y = AXB⊤

• Define A,B ∈ Rm×d as composed of i.i.d. Bernoulli entries such as

Au,i =

{
1, if i ∈ u,

0, otherwise.
Bv,j =

{
1, if j ∈ v,

0, otherwise.

• Then,

Yu,v =

d−1∑
i=0

d−1∑
j=0

Au,iXi,jBv,j =
∑
i∈u

∑
j∈v

Xi,j

The sketching matrices A and B respectively partition the original graph G in two different
dimensions.
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Illustration of Graph Sketching

X =



0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1
1 0 0 0 1 0 0 0
1 1 0 0 1 1 1 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


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Figure 5: Original Graph: Y
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Illustration of Graph Sketching

X =



0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1
1 0 0 0 1 0 0 0
1 1 0 0 1 1 1 0
1 0 0 0 0 0 0 0
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1 0 0 0 0 0 0 0
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A =
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
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Figure 6: Compressed Graph: Y = AXA⊤
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Illustration of Graph Sketching

X =



0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1
1 0 0 0 1 0 0 0
1 1 0 0 1 1 1 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0



B =


1 0 1 0 0 0 1 0
0 0 1 1 1 0 1 0
1 1 1 1 1 0 1 0
1 0 0 0 0 1 1 1


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Figure 7: Compressed Graph: Y = BXB⊤
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Illustration of Graph Sketching

AXA⊤


0 0 1 1
0 0 4 2
1 2 2 0
0 0 2 0



BXB⊤


2 1 3 2
5 3 8 6
7 5 11 8
3 0 3 3



AXB⊤


1 1 2 1
3 2 5 4
3 2 4 3
2 0 2 2



 0

 3
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 d
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Figure 8: Compressed Graph: Y = AXB⊤
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Related Work

The distributed sparsity assumption: the matrix X⋆ is called d-distributed sparse if each
row/column of X cannot have more than d non-zeros.

• Convex optimization program (Dasarathy 2012)

X̂ = argmin
X

{∥∥∥AXB⊤ − Y
∥∥∥2
F
+ λ ∥X∥1

}

, is easy to obtain by iterative algorithm due to its convexity,

/ introduces a non-negligible bias.
• Our work:

, no bias

/ low-rank
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Problem Formulation
We propose to estimate the low-rank matrices from bilinear measurements using the
non-convex penalty

minimize
X

1

2m2

∥∥∥Y −AXB⊤
∥∥∥2
F
+ Pλ(X)

where Pλ(X) =
∑d

i=1 pλ(σi(X)) is a decomposable nonconvex penalty imposed on the
singular values of X such as Pλ(X) = λ∥X∥∗ +

∑d
i=1 qλ(σi(X)).

Assumption 1
• There exists ν > 0 such that the derivative satisfies p′λ(t) = 0 for all t ≥ ν;
• Both pλ(t) and qλ(t) are symmetric about zero, i.e., pλ(t) = pλ(−t), qλ(t) = qλ(−t);
• The derivative q′λ(t) is monotonic and Lipschitz continuous in the interval [0,∞).

Explicitly, for t2 ≥ t1 ≥ 0, there exist constants ζ− ≥ ζ+ > 0 such that
−ζ− ≤ q′λ(t2)−q′λ(t1)

(t2−t1)
≤ −ζ+.

• Both qλ(t) and its derivative vanish at zero, i.e., qλ(0) = q′λ(0) = 0;
• There exists a constant λ > 0 bounding the magnitude of the derivative, i.e., |q′λ(t)| ≤ λ.
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Optimization Algorithm
Algorithm 1: Proximal Gradient Algorithm
Input λ0 > 0, ϵ > 0, Lmin > 0, η ∈ (0, 1), δ ∈ (0, 1)
Initialize X0 = 0, L0 = Lmin

for t = 0, 1, . . . , T − 1 do
λt+1 = ηλt; ϵt+1 = λt/4;
k = 0; Xk = Xt;
while ωλt+1(X

k) > ϵt+1 do
k = k + 1;
Xk = argminX F̃L,λ(X;Xk−1);
If F (Xk) > F̃ (Xk;Xk−1) then

Lk−1 = 2Lk−1;
end if
Lk = max{Lmin, Lk−1/2}

end while
Xt+1 = Xk; Lt+1 = Lk

end for
Output{Xt}Tt=1
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Algorithm Illustration

Initial point

Output solution to
the 1st iteration

Output solution to
the 2nd iteration

Output solution to
the T-th iteration

...

� � 

� � 

� � 

� � 

�∗
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Preliminaries

Consider the singular value decomposition X⋆ = U⋆Σ⋆V ⋆⊤, where U⋆,V ⋆ ∈ Rd×r, and
Σ⋆ = diag(σ⋆

1, . . . , σ
⋆
r ). We introduce the subspace F and F⊥, which are defined in terms of

the row and column spaces of the matrices:

F (U⋆,V ⋆) := {∆ | row (∆) ⊆ V ⋆, col (∆) ⊆ U⋆} ,
F⊥ (U⋆,V ⋆) := {∆ | row (∆) ⊥ V ⋆, col (∆) ⊥ U⋆} .

Restricted Region
Define a local region R as

R = {∆ | ∥ΠF⊥ (∆)∥∗ ≤ 5 ∥ΠF (∆) ∥∗} ,

where ΠF(·) is the projection operator that projects matrices into the subspace F .
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Essential Assumptions

Assumption 2 (RSC & RSM)
• The empirical loss function f (·) is ρ−-strongly convex and ρ+-smooth over R with

∞ > ρ+ ≥ ρ− > 0. Specifically, for all X −X ′ ∈ R, we have:〈
X −X ′,∇f (X)−∇f

(
X ′)〉 ≥ ρ−

∥∥X −X ′∥∥2
F
,〈

X −X ′,∇f (X)−∇f
(
X ′)〉 ≥ ∥∇f (X)−∇f (X ′) ∥2F

ρ+
.

Assumption 3 (Minimal Signal Strength)
• The singular value of the ground truth X⋆ satisfies:

min
i∈S1∪S2

|σ⋆
i | ≥ ν + 2

√
s1 + s2∥A⊤EB∥F/(m2ρ).
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Theoretical Results I

Define S1 = {i | σ⋆
i ≥ ν}, S2 = {i | ν > σ⋆

i > 0} with their corresponding cardinalities given by
s1 = |S1| and s2 = |S2|.

Theorem 1
Suppose Assumptions 1 and 2 hold, if ρ− > ζ−, λ ≳ ∥A⊤EB∥F/m2, we have:

∥X̂ −X⋆∥F ≲ τ
√
s1 +

√
s2

where τ = ∥ΠFS1
(∇f (X⋆)) ∥F and FS1 is a subspace of F associated with S1.

• The oracle rate refers to the statistical convergence rate of the oracle estimator, defined as
X̂O = arg min

X∈F(U⋆,V ⋆)
f (X), which knows the true rank spaces in advance. By the mean

value theorem, it is easy to obtain that ∥X̂O −X⋆∥F ≲ ∥ΠF (∇f (X⋆)) ∥F.
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Theoretical Results II

Theorem 2 (oracle property)
Suppose Assumptions 1, 2 and 3 hold.
If ρ > ζ−, and

λ ≥ (ρ− +
√
s1 + s2ρ

+)∥A⊤EB∥F
2m2ρ−

,

we have
rank(X̂) = rank(X̂O) = rank (X⋆)

and

∥X̂ −X⋆∥F ≲
√
s1τ,

where τ = ∥ΠF (∇f (X⋆))∥F.
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Theoretical Results III
Corollary 3
Consider the noise entries are i.i.d. sub-Gaussian random variables with variance κ, and the
vectorized sketching matrices vec(A) and vec(B) follow sub-Gaussian distributions
vec(A) ∼ N (0,Θ1), vec(B) ∼ N (0,Θ2). We term these as Θ1-ensemble and Θ2-ensemble,
and ϖ1(Θ1) =

√
sup∥u∥2=1,∥v∥2=1Var(u

⊤Av), ϖ2(Θ2) =
√
sup∥u∥2=1,∥v∥2=1Var(u

⊤Bv).
Assuming Assumptions 1 and 2 hold, and A and B are sampled from Θ1-ensemble and
Θ2-ensemble, respectively, if ρ ≳

√
λmin(Θ1)λmin(Θ2) > ζ− and λ ≳ κ

√
ϖ1ϖ2d/m, then

with probability at least 1− exp(−d). Additionally, according to Theorem 1, we have:∥∥∥X̂ −X⋆
∥∥∥
F
≲ O

(√
ϖ1ϖ2

λmin(Θ1)λmin(Θ2)

κ(
√
s2d+ s1)

m

)
.

With Assumption 3, the convergence rate improves to

O
(√

ϖ1ϖ2

λmin(Θ1)λmin(Θ2)

κs1
m

)
.
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Experiment I
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Figure 9: Heatmaps show the recovery of a 50× 50 low-rank matrix (rank = 10, Gaussian generated)
from noisy bilinear measurements with N (0, 0.01) noise. MCP achieves near-perfect recovery, while
nuclear-norm minimization exhibits excessive smoothing and weakens low-rank features.
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Experiment II
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Figure 10: An illustrative example of graph sketching is shown as follows: (a) The original graph G with
15 nodes; (b) The sketch of the graph G, where the nodes represent the partitions and the edges
represent the total number of edges of G that cross these partitions; (c) The graph recovered using
least squares error minimization; (d) The graph recovered using the SCAD penalty.
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Experiment III

Dataset Nuclear Weighted Nuclear SCAD MCP

Fashion-MNIST 0.7683± 0.1076 0.7286± 0.0630 0.0124± 0.0033 0.0108± 0.0012
Places365 0.4472± 0.0827 0.4647± 0.0484 0.0079± 0.0013 0.0066± 0.0021
ImageNet-O 0.4574± 0.1502 0.5069± 0.1149 0.0137± 0.0079 0.0138± 0.0056

Table 1: Low-rank recovery experiments on three real-world image datasets: Fashion-MNIST
(d = 28, r = 10), Places365 (d = 256, r = 100), and ImageNet-O (d = 512, r = 200). Observations are
formed using bilinear sketching with m = 5, 50, 80 and additive N (0, 0.01) noise. We compare nuclear
norm, weighted nuclear norm, and nonconvex methods (SCAD and MCP).
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Conclusions

• We have proposed a novel approach for low-rank matrix estimation from bilinear
measurements using the non-convex penalty.

• We have presented both the theoretical and empirical results.
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Thank you!
Website: https://wenbinwang12.github.io
Email: wangwb2023@shanghaitech.edu.cn
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