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Compressed Sensing
Classic Framework:
yi:a;ra:, 1=1,...,m,

where {a;}", are the sketching/sensing vectors, x is the data/signal, {y;}/", are the
measurements.
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(a) Magnetic Resonance Imaging (b) Image Denoising Robust Face Recognition
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Challenges in Modern Data Acquisition
Data generation at unprecedented rate: data samples are
¢ high-dimensional (dimension > date number);
® not observable due to privacy or security constraints;
e distributed at multiple locations.
Limited processing power at sensor platforms:
® time-sensitive: impossible to obtain a complete snapshot of the system;
® storage-limited: cannot store the whole data set;
e power-hungry: minimize the number of observations.

Unprecedented Data Rate and Volume ] { Limited Power and Storage

Figure 1: Mismatch streaming®

https://yuejiechi.github.io/GeometricConstraints.html
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Bilinear Matrix Sketching

-

Y = A X B + E .
~~ ~~ ~~ ~~ ~~
observation measurement matrix unknown measurement matrix noise

Y.Ec R™™, X e R A BeR™! m<d.
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Bilinear Matrix Sketching

Y = A X BT + _E .
~~ ~~ ~~ ~~ ~~
observation measurement matrix unknown measurement matrix noise

Y.Ec R™™, X e R A BeR™! m<d.

Why Bilinear? Why Matrix? Why low-rank?
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Bilinear Matrix Sketching

Y = A X BT + _E .
~~ ~~ ~~ ~~ ~~
observation measurement matrix unknown measurement matrix noise

Y.Ec R™™, X e R A BeR™! m<d.

Why Bilinear? Why Matrix? Why low-rank?
Application-driven

4/28



Covariance Sketching
Consider two data x, ' possibly distributedly observed at m sensors:

o
Q-K\wg) l l
@/ - I

Bilinear Sketching:

® two sketching matrices A, B € R™*¢ with specific distribution;
® two observations z = Ax and 2z’ = Bz’ with the cross-covariance matrix of the sketches:
E(zz'")=A X* B
~~
E(zz’T)
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Graph Sketching

Consider a directed graph G with d nodes with adjacency matrix X.
e First, we consider Y = AX AT

® Define A € R™*¢ as composed of i.i.d. Bernoulli entries such as

1, if i€ u,
Au,i = .
0, otherwise.
® Then,
d—1d—
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lllustration of Graph Sketching
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Figure 2: Original Graph: X
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lllustration of Graph Sketching
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Figure 3: Original Graph: X
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lllustration of Graph Sketching
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Figure 4: Compressed Graph: Y
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Graph Sketching

Consider a directed graph G with d nodes with adjacency matrix X.
® Now, we consider Y = AXB'

e Define A, B € R™*? as composed of i.i.d. Bernoulli entries such as

1, ifi€u, 1, ifjew,
Au,i:{ . Bv,j:{ .

0, otherwise.

® Then,

d—1d—

._\

A,iXi B, = Z Z X

i€u jeEV

.
I§
o

=0 J

The sketching matrices A and B respectively partition the original graph G in two different

dimensions.

0, otherwise.

10/28



lllustration of Graph Sketching
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Figure 5: Original Graph: Y
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lllustration of Graph Sketching
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Figure 6: Compressed Graph: Y
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lllustration of Graph Sketching
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Figure 7: Compressed Graph: Y
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Illustration of Graph Sketching
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Figure 8: Compressed Graph: Y = AXB'
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Related Work

The distributed sparsity assumption: the matrix X* is called d-distributed sparse if each
row/column of X cannot have more than d non-zeros.

J

e Convex optimization program (Dasarathy 2012)

—

2
X = argn}i(n{HAXBT - YHF +A \XHI}

is easy to obtain by iterative algorithm due to its convexity,

@ introduces a non-negligible bias.
e Qur work:
no bias

low-rank
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Problem Formulation
We propose to estimate the low-rank matrices from bilinear measurements using the
non-convex penalty

mln}{mlze—"Y AXBTH + P\(X)

where P\(X) = Z;flzlpA(ai(X)) is a decomposable nonconvex penalty imposed on the
singular values of X such as Py(X) = M| X |« + 3%, ga(0i(X)).

Assumption 1
® There exists v > 0 such that the derivative satisfies p) (t) = 0 for all ¢ > v;

® Both py(t) and ¢\ (t) are symmetric about zero, i.e., px(t) = pa(—1), o (t) = gr(—1);

® The derivative ¢ (t) is monotonic and Lipschitz continuous in the interval [0, c0).
Explicitly, for to > t; > 0, there exist constants (=~ > ¢+ > 0 such that

= A\ (t2)—d) (t1)
_C S qy (;_gf) 1 S _<"+_

® Both ¢, (t) and its derivative vanish at zero, i.e., ¢A(0) = ¢} (0) = 0;

® There exists a constant A > 0 bounding the magnitude of the derivative, i.e., |¢}(¢)] < A.
16728




Optimization Algorithm
Algorithm 1: Proximal Gradient Algorithm
Input Ay >0, €>0, Ly, >0, 1€ (0,1), 6 € (0,1)
Initialize X° =0, Ly = Ly,
fort=0,1,...,7—1do
At41 = NA¢; €441 = )\t/4;
k=0; Xk =Xt
while wy, , (X*) > ¢,41 do
k=k+1; B
Xk = argminy Fj, \(X; X*1);
If F(X*) > F(X*; X*1) then
Ly 1=2Lk 1;
end if
Lk = max{Lmin, Lk_l/Z}
end while
X = X% Ly = Ly,
end for
Output{X*}1 |

y
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Algorithm lllustration
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Preliminaries

Consider the singular value decomposition X* = U*X*V*T, where U*, V* € R¥" and
X* = diag(o7, . ..,07). We introduce the subspace F and F*, which are defined in terms of
the row and column spaces of the matrices:

FU*,V*):={A |row (A) CV* col(A) CU"},
FLU*, V*):={A |row (A) L V*,col(A) LU*}.
Restricted Region
Define a local region R as
R ={A|[z: (A, <5[TIF (A)l«},

where I1x(.) is the projection operator that projects matrices into the subspace F.
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Essential Assumptions

Assumption 2 (RSC & RSM)

® The empirical loss function f (-) is p~-strongly convex and p*-smooth over R with
oo > pt > p~ > 0. Specifically, for all X — X’ € R, we have:

(X - X', Vf(X)= V(X)) >p ||X - X3,

19/ (X) - V5 (X) R

(x - x'.97 () - v (x) > ELE D

Assumption 3 (Minimal Signal Strength)

® The singular value of the ground truth X™* satisfies:

min_|o}| > v+ 2v/s51 + 52| AT EBl||p/(m?p).
1€S1US2
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Theoretical Results |

Define S; = {i | o} > v}, So = {i | v > of > 0} with their corresponding cardinalities given by
S1 = ‘81| and SS9 = ‘82‘

Theorem 1
Suppose Assumptions 1 and 2 hold, if p~ > (=, A 2 || AT EB||p/m?, we have:

IX — X*||lp S 7/51 + /52

where T = |[Ilz, (Vf(X™))||r and Fg, is a subspace of F associated with Si.

v

® The oracle rate refers to the statistical convergence rate of the oracle estimator, defined as

X0 =arg min_ f (X)), which knows the true rank spaces in advance. By the mean
XeF(U*V*)

value theorem, it is easy to obtain that HX\O — X*lr S (VS (X)) |p-
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Theoretical Results |l

Theorem 2 (oracle property)
Suppose Assumptions 1, 2 and 3 hold.

If p> (¢, and

\ o (o~ 4 ET Tt |ATEB]
we have A A

rank(X) = rank(X?) = rank (X*)
and

IX — X*||lr S Vi,

where T = ||[ILx (V f (X™))|p-
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Theoretical Results |1l
Corollary 3 |

Consider the noise entries are i.i.d. sub-Gaussian random variables with variance «, and the
vectorized sketching matrices vec(A) and vec(B) follow sub-Gaussian distributions
vec(A) ~ N(0,0,), vec(B) ~ N(0,03). We term these as ©1-ensemble and ©4-ensemble,

and w1 (©) = \/sup||u||2:1,||v||2:1 Var(u' Av), @2(02) = \/sup||u||2:1,||v||2:1 Var(u' Bv).

Assuming Assumptions 1 and 2 hold, and A and B are sampled from ®1-ensemble and
Os-ensemble, respectively, if p 2 \/Amin(©1)Amin(O2) > ¢~ and A 2 ky/wiwad/m, then
with probability at least 1 — exp(—d). Additionally, according to Theorem 1, we have:

PO <\/Amin((;§?riin(@2) K(\/ﬁjL 81)) .

HEE—X*

With Assumption 3, the convergence rate improves to

e
Amin(el))\min(QZ) m i

23 /28



Experiment |

0
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(a) Ground Truth (b) Nuclear (c) MCP

Figure 9: Heatmaps show the recovery of a 50 x 50 low-rank matrix (rank = 10, Gaussian generated)
from noisy bilinear measurements with A/(0,0.01) noise. MCP achieves near-perfect recovery, while
nuclear-norm minimization exhibits excessive smoothing and weakens low-rank features.
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Figure 10: An illustrative example of graph sketching is shown as follows: (a) The original graph G with
15 nodes; (b) The sketch of the graph G, where the nodes represent the partitions and the edges
represent the total number of edges of G that cross these partitions; (c) The graph recovered using
least squares error minimization; (d) The graph recovered using the SCAD penalty.
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Experiment Il

Dataset Nuclear Weighted Nuclear SCAD MCP
Fashion-MNIST 0.7683 +£0.1076  0.7286 +0.0630  0.0124 +0.0033  0.0108 + 0.0012
Places365 0.4472 £ 0.0827 0.4647 +0.0484  0.0079 £ 0.0013  0.0066 + 0.0021

ImageNet-O 0.4574+£0.1502  0.5069 £0.1149 0.0137 £0.0079  0.0138 £ 0.0056

Table 1: Low-rank recovery experiments on three real-world image datasets: Fashion-MNIST

(d = 28,7 = 10), Places365 (d = 256, = 100), and ImageNet-O (d = 512, r = 200). Observations are
formed using bilinear sketching with m = 5,50, 80 and additive A/(0,0.01) noise. We compare nuclear
norm, weighted nuclear norm, and nonconvex methods (SCAD and MCP).
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Conclusions

® We have proposed a novel approach for low-rank matrix estimation from bilinear
measurements using the non-convex penalty.

® \We have presented both the theoretical and empirical results.
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Thank youl

Website: https://wenbinwangl?2.github.io
Email: wangwb2023@shanghaitech.edu.cn
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