Noisy Bilinear Low-Rank Matrix Sketching

Wenbin Wang, Xindi Ping, Cheng Cheng, Ziping Zhao

ShanghaiTech University, Shanghai, China 2025 IEEE Information Theory Workshop

October 2nd, 2025

Compressed Sensing

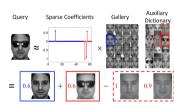
Classic Framework:

$$y_i = \boldsymbol{a}_i^{\top} \boldsymbol{x}, \quad i = 1, \dots, m,$$

where $\{a_i\}_{i=1}^m$ are the sketching/sensing vectors, x is the data/signal, $\{y_i\}_{i=1}^m$ are the measurements.

(a) Magnetic Resonance Imaging

(b) Image Denoising



(c) Robust Face Recognition

Challenges in Modern Data Acquisition

Data generation at unprecedented rate: data samples are

- high-dimensional (dimension ≫ date number);
- not observable due to privacy or security constraints;
- distributed at multiple locations.

Limited processing power at sensor platforms:

- time-sensitive: impossible to obtain a complete snapshot of the system;
- storage-limited: cannot store the whole data set;
- power-hungry: minimize the number of observations.

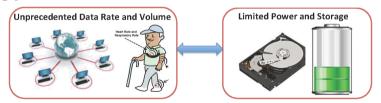


Figure 1: Mismatch streaming¹

¹https://yuejiechi.github.io/GeometricConstraints.html

Bilinear Matrix Sketching

Bilinear Matrix Sketching

$$egin{align*} oldsymbol{Y} &= oldsymbol{A} & oldsymbol{X} & oldsymbol{B}^ op & + & oldsymbol{E} \ . & ext{noise} \ . \ oldsymbol{Y}, oldsymbol{E} \in oldsymbol{R}^{m imes m}, & oldsymbol{X} \in oldsymbol{R}^{d imes d}, & oldsymbol{A}, oldsymbol{B} \in \mathbb{R}^{m imes d}, & m \ll d. \ . \end{aligned}$$

Why Bilinear? Why Matrix? Why low-rank?

Bilinear Matrix Sketching

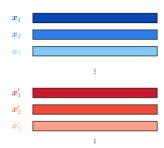
$$egin{align*} oldsymbol{Y} &= oldsymbol{A} & oldsymbol{X} & oldsymbol{B}^ op & + & oldsymbol{E} \ . \ ext{observation} & ext{measurement matrix} & ext{unknown} & ext{measurement matrix} & ext{noise} \ . \ oldsymbol{Y}, oldsymbol{E} \in oldsymbol{R}^{m imes d}, & oldsymbol{X} \in oldsymbol{R}^{m imes d}, & m \ll d. \end{aligned}$$

Why Bilinear? Why Matrix? Why low-rank?

Application-driven

Covariance Sketching

Consider two data x, x' possibly distributedly observed at m sensors:



Bilinear Sketching:

- ullet two sketching matrices $oldsymbol{A}, oldsymbol{B} \in \mathbb{R}^{m imes d}$ with specific distribution;
- ullet two observations z=Ax and z'=Bx' with the cross-covariance matrix of the sketches:

$$\mathbb{E}(zz'^{ op}) = A \underbrace{X^{\star}}_{\mathbb{E}(xx'^{ op})} B$$

Graph Sketching

Consider a directed graph $\mathcal G$ with d nodes with adjacency matrix $\boldsymbol X$.

- First, we consider $Y = AXA^{\top}$
- ullet Define $oldsymbol{A} \in \mathbb{R}^{m imes d}$ as composed of i.i.d. Bernoulli entries such as

$$m{A}_{u,i} = egin{cases} 1, & ext{if} & i \in u, \ 0, & ext{otherwise}. \end{cases}$$

• Then,

$$oldsymbol{Y}_{u,v} = \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} oldsymbol{A}_{u,i} \, oldsymbol{X}_{i,j} \, oldsymbol{A}_{v,j}$$

$$\boldsymbol{X} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

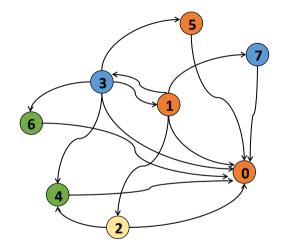


Figure 2: Original Graph: X

$$\boldsymbol{X} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\boldsymbol{A} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

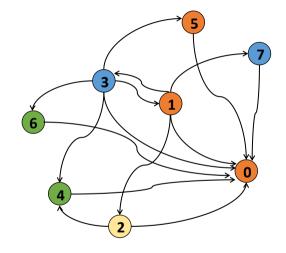


Figure 3: Original Graph: X

$$\boldsymbol{Y} = \left[\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & 2 \\ 1 & 2 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{array} \right]$$

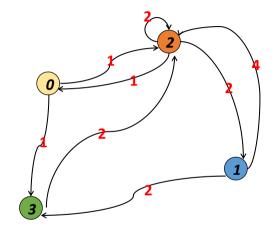


Figure 4: Compressed Graph: Y

Graph Sketching

Consider a directed graph $\mathcal G$ with d nodes with adjacency matrix $\boldsymbol X$.

- ullet Now, we consider $oldsymbol{Y} = oldsymbol{A} oldsymbol{X} oldsymbol{B}^ op$
- Define $A, B \in \mathbb{R}^{m \times d}$ as composed of i.i.d. Bernoulli entries such as

$$m{A}_{u,i} = egin{cases} 1, & ext{if } i \in u, \ 0, & ext{otherwise.} \end{cases} m{B}_{v,j} = egin{cases} 1, & ext{if } j \in v, \ 0, & ext{otherwise.} \end{cases}$$

Then,

$$oldsymbol{Y}_{u,v} = \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} oldsymbol{A}_{u,i} oldsymbol{X}_{i,j} oldsymbol{B}_{v,j} = \sum_{i \in u} \sum_{j \in v} oldsymbol{X}_{i,j}$$

The sketching matrices A and B respectively partition the original graph G in two different dimensions.

$$\boldsymbol{X} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

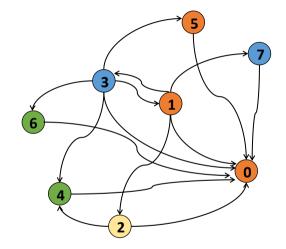


Figure 5: Original Graph: $oldsymbol{Y}$

$$\boldsymbol{X} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\boldsymbol{A} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

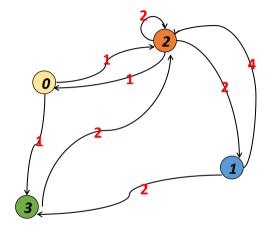


Figure 6: Compressed Graph: $Y = AXA^{\top}$

$$\boldsymbol{X} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\boldsymbol{B} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

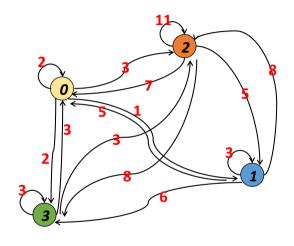
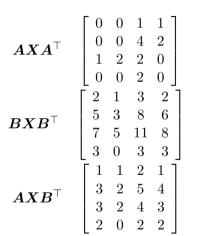


Figure 7: Compressed Graph: $Y = BXB^{\top}$



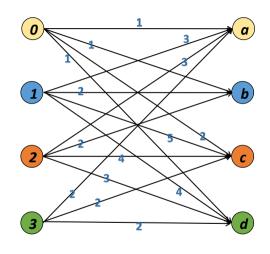


Figure 8: Compressed Graph: $Y = AXB^{\top}$

Related Work

The distributed sparsity assumption: the matrix X^* is called d-distributed sparse if each row/column of X cannot have more than d non-zeros.

• Convex optimization program (Dasarathy 2012)

$$\widehat{m{X}} = rg \min_{m{X}} \left\{ \left\| m{A} m{X} m{B}^{ op} - m{Y} \right\|_{ ext{F}}^2 + \lambda \left\| m{X}
ight\|_1
ight\}$$

- is easy to obtain by iterative algorithm due to its convexity,
- introduces a non-negligible bias.
- Our work:
 - © no bias
 - iow-rank

Problem Formulation

We propose to estimate the low-rank matrices from bilinear measurements using the non-convex penalty

minimize
$$\frac{1}{2m^2} \left\| \boldsymbol{Y} - \boldsymbol{A} \boldsymbol{X} \boldsymbol{B}^{\top} \right\|_{\mathrm{F}}^2 + P_{\lambda}(\boldsymbol{X})$$

where $P_{\lambda}(X) = \sum_{i=1}^{d} p_{\lambda}(\sigma_{i}(X))$ is a decomposable nonconvex penalty imposed on the singular values of X such as $P_{\lambda}(X) = \lambda ||X||_{*} + \sum_{i=1}^{d} q_{\lambda}(\sigma_{i}(X))$.

Assumption 1

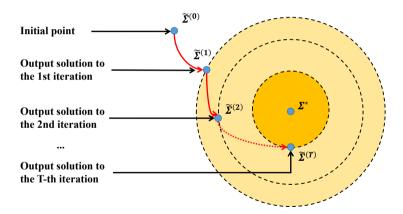
- There exists $\nu > 0$ such that the derivative satisfies $p'_{\lambda}(t) = 0$ for all $t \ge \nu$;
- Both $p_{\lambda}(t)$ and $q_{\lambda}(t)$ are symmetric about zero, i.e., $p_{\lambda}(t) = p_{\lambda}(-t)$, $q_{\lambda}(t) = q_{\lambda}(-t)$;
- The derivative $q'_{\lambda}(t)$ is monotonic and Lipschitz continuous in the interval $[0,\infty)$. Explicitly, for $t_2 \geq t_1 \geq 0$, there exist constants $\zeta^- \geq \zeta^+ > 0$ such that $-\zeta^- \leq \frac{q'_{\lambda}(t_2) q'_{\lambda}(t_1)}{(t_2 t_1)} \leq -\zeta^+$.
- Both $q_{\lambda}(t)$ and its derivative vanish at zero, i.e., $q_{\lambda}(0) = q'_{\lambda}(0) = 0$;
- There exists a constant $\lambda>0$ bounding the magnitude of the derivative, i.e., $|q_\lambda'(t)|\leq \lambda$.

Optimization Algorithm

Algorithm 1: Proximal Gradient Algorithm

```
Input \lambda_0 > 0, \epsilon > 0, L_{\min} > 0, \eta \in (0,1), \delta \in (0,1)
Initialize X^0 = 0, L_0 = L_{\min}
for t = 0, 1, ..., T - 1 do
       \lambda_{t+1} = n\lambda_t: \epsilon_{t+1} = \lambda_t/4:
       k = 0: X^k = X^t.
       while \omega_{\lambda_{t+1}}(X^k) > \epsilon_{t+1} do
              k = k + 1:
              X^k = \arg\min_{\mathbf{X}} \widetilde{F}_{L,\lambda}(\mathbf{X}; \mathbf{X}^{k-1}):
              If F(\mathbf{X}^k) > \widetilde{F}(\mathbf{X}^k; \mathbf{X}^{k-1}) then
                    L_{k-1} = 2L_{k-1}:
              end if
              L_k = \max\{L_{\min}, L_{k-1}/2\}
       end while
       X^{t+1} = X^k: L_{t+1} = L_k
end for
Output\{X^t\}_{t=1}^T
```

Algorithm Illustration



Preliminaries

Consider the singular value decomposition $X^* = U^* \Sigma^* V^{*\top}$, where $U^*, V^* \in \mathbb{R}^{d \times r}$, and $\Sigma^* = \operatorname{diag}(\sigma_1^*, \dots, \sigma_r^*)$. We introduce the subspace \mathcal{F} and \mathcal{F}^{\perp} , which are defined in terms of the row and column spaces of the matrices:

$$\mathcal{F}\left(\boldsymbol{U}^{\star}, \boldsymbol{V}^{\star}\right) := \left\{\boldsymbol{\Delta} \mid \operatorname{row}\left(\boldsymbol{\Delta}\right) \subseteq \boldsymbol{V}^{\star}, \operatorname{col}\left(\boldsymbol{\Delta}\right) \subseteq \boldsymbol{U}^{\star}\right\},$$

$$\mathcal{F}^{\perp}\left(\boldsymbol{U}^{\star}, \boldsymbol{V}^{\star}\right) := \left\{\boldsymbol{\Delta} \mid \operatorname{row}\left(\boldsymbol{\Delta}\right) \perp \boldsymbol{V}^{\star}, \operatorname{col}\left(\boldsymbol{\Delta}\right) \perp \boldsymbol{U}^{\star}\right\}.$$

Restricted Region

Define a local region ${\cal R}$ as

$$\mathcal{R} = \left\{ \boldsymbol{\Delta} \mid \left\| \Pi_{\mathcal{F}^{\perp}} \left(\boldsymbol{\Delta} \right) \right\|_{*} \leq 5 \left\| \Pi_{\mathcal{F}} \left(\boldsymbol{\Delta} \right) \right\|_{*} \right\},$$

where $\Pi_{\mathcal{F}(\cdot)}$ is the projection operator that projects matrices into the subspace \mathcal{F} .

Essential Assumptions

Assumption 2 (RSC & RSM)

• The empirical loss function $f(\cdot)$ is ρ^- -strongly convex and ρ^+ -smooth over $\mathcal R$ with $\infty > \rho^+ \ge \rho^- > 0$. Specifically, for all $X - X' \in \mathcal R$, we have:

$$\langle \boldsymbol{X} - \boldsymbol{X}', \nabla f(\boldsymbol{X}) - \nabla f(\boldsymbol{X}') \rangle \ge \rho^{-} \|\boldsymbol{X} - \boldsymbol{X}'\|_{F}^{2},$$
$$\langle \boldsymbol{X} - \boldsymbol{X}', \nabla f(\boldsymbol{X}) - \nabla f(\boldsymbol{X}') \rangle \ge \frac{\|\nabla f(\boldsymbol{X}) - \nabla f(\boldsymbol{X}')\|_{F}^{2}}{\rho^{+}}.$$

Assumption 3 (Minimal Signal Strength)

ullet The singular value of the ground truth $oldsymbol{X}^{\star}$ satisfies:

$$\min_{i \in S_1 \cup S_2} |\sigma_i^{\star}| \ge \nu + 2\sqrt{s_1 + s_2} \|\boldsymbol{A}^{\top} \boldsymbol{E} \boldsymbol{B}\|_{\mathrm{F}} / (m^2 \rho).$$

Theoretical Results I

Define $S_1 = \{i \mid \sigma_i^{\star} \geq \nu\}$, $S_2 = \{i \mid \nu > \sigma_i^{\star} > 0\}$ with their corresponding cardinalities given by $s_1 = |S_1|$ and $s_2 = |S_2|$.

Theorem 1

Suppose Assumptions 1 and 2 hold, if $\rho^- > \zeta^-$, $\lambda \gtrsim \|\mathbf{A}^\top \mathbf{E} \mathbf{B}\|_{\mathrm{F}}/m^2$, we have:

$$\|\widehat{\boldsymbol{X}} - \boldsymbol{X}^{\star}\|_{\mathrm{F}} \lesssim \tau \sqrt{s_1} + \sqrt{s_2}$$

where $\tau = \|\Pi_{\mathcal{F}_{S_1}}(\nabla f(\mathbf{X}^*))\|_{\mathrm{F}}$ and \mathcal{F}_{S_1} is a subspace of \mathcal{F} associated with S_1 .

• The oracle rate refers to the statistical convergence rate of the oracle estimator, defined as $\widehat{X}^O = \arg\min_{oldsymbol{X} \in \mathcal{F}(oldsymbol{U}^\star, oldsymbol{V}^\star)} f(oldsymbol{X})$, which knows the true rank spaces in advance. By the mean value theorem, it is easy to obtain that $\|\widehat{X}^O - X^\star\|_{\mathrm{F}} \lesssim \|\Pi_{\mathcal{F}}(\nabla f(X^\star))\|_{\mathrm{F}}$.

Theoretical Results II

Theorem 2 (oracle property)

Suppose Assumptions 1, 2 and 3 hold.

If $\rho > \zeta^-$, and

$$\lambda \geq \frac{(\rho^- + \sqrt{s_1 + s_2}\rho^+) \|\boldsymbol{A}^\top \boldsymbol{E} \boldsymbol{B}\|_{\mathrm{F}}}{2m^2 \rho^-},$$

we have

$$\operatorname{rank}(\widehat{\boldsymbol{X}}) = \operatorname{rank}(\widehat{\boldsymbol{X}}^O) = \operatorname{rank}(\boldsymbol{X}^{\star})$$

and

$$\|\widehat{\boldsymbol{X}} - \boldsymbol{X}^{\star}\|_{\mathrm{F}} \lesssim \sqrt{s_1}\tau,$$

where
$$\tau = \|\Pi_{\mathcal{F}} (\nabla f(\mathbf{X}^{\star}))\|_{F}$$
.

Theoretical Results III

Corollary 3

Consider the noise entries are i.i.d. sub-Gaussian random variables with variance κ , and the vectorized sketching matrices $\operatorname{vec}(A)$ and $\operatorname{vec}(B)$ follow sub-Gaussian distributions $\operatorname{vec}(A) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Theta}_1)$, $\operatorname{vec}(B) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Theta}_2)$. We term these as $\mathbf{\Theta}_1$ -ensemble and $\mathbf{\Theta}_2$ -ensemble, and $\varpi_1(\mathbf{\Theta}_1) = \sqrt{\sup_{\|\mathbf{u}\|_2 = 1, \|\mathbf{v}\|_2 = 1} \operatorname{Var}(\mathbf{u}^\top A \mathbf{v})}$, $\varpi_2(\mathbf{\Theta}_2) = \sqrt{\sup_{\|\mathbf{u}\|_2 = 1, \|\mathbf{v}\|_2 = 1} \operatorname{Var}(\mathbf{u}^\top B \mathbf{v})}$.

Assuming Assumptions 1 and 2 hold, and ${\bf A}$ and ${\bf B}$ are sampled from ${\bf \Theta}_1$ -ensemble and ${\bf \Theta}_2$ -ensemble, respectively, if $\rho \gtrsim \sqrt{\lambda_{\min}({\bf \Theta}_1)\lambda_{\min}({\bf \Theta}_2)} > \zeta^-$ and $\lambda \gtrsim \kappa \sqrt{\varpi_1\varpi_2d}/m$, then with probability at least $1-\exp(-d)$. Additionally, according to Theorem 1, we have:

$$\|\widehat{\boldsymbol{X}} - {\boldsymbol{X}}^{\star}\|_{\mathrm{F}} \lesssim \mathcal{O}\left(\sqrt{\frac{\overline{\omega}_1 \overline{\omega}_2}{\lambda_{\min}(\boldsymbol{\Theta}_1)\lambda_{\min}(\boldsymbol{\Theta}_2)}} \frac{\kappa(\sqrt{s_2 d} + s_1)}{m}\right).$$

With Assumption 3, the convergence rate improves to

$$\mathcal{O}\left(\sqrt{\frac{\varpi_1\varpi_2}{\lambda_{\min}(\boldsymbol{\Theta}_1)\lambda_{\min}(\boldsymbol{\Theta}_2)}}\frac{\kappa s_1}{m}\right).$$

Experiment I

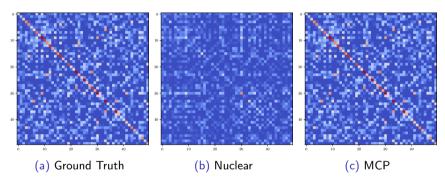


Figure 9: Heatmaps show the recovery of a 50×50 low-rank matrix (rank = 10, Gaussian generated) from noisy bilinear measurements with $\mathcal{N}(0,0.01)$ noise. MCP achieves near-perfect recovery, while nuclear-norm minimization exhibits excessive smoothing and weakens low-rank features.

Experiment II

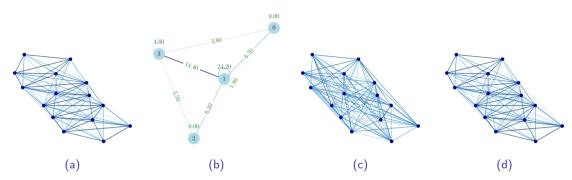


Figure 10: An illustrative example of graph sketching is shown as follows: (a) The original graph $\mathcal G$ with 15 nodes; (b) The sketch of the graph $\mathcal G$, where the nodes represent the partitions and the edges represent the total number of edges of G that cross these partitions; (c) The graph recovered using least squares error minimization; (d) The graph recovered using the SCAD penalty.

Experiment III

Dataset	Nuclear	Weighted Nuclear	SCAD	МСР
Fashion-MNIST Places365	0.7683 ± 0.1076 0.4472 ± 0.0827	0.7286 ± 0.0630 0.4647 ± 0.0484	$\begin{array}{c} 0.0124 \pm 0.0033 \\ 0.0079 \pm 0.0013 \end{array}$	$0.0108 \pm 0.0012 \\ 0.0066 \pm 0.0021$
ImageNet-O	0.4574 ± 0.1502	0.5069 ± 0.1149	0.0137 ± 0.0079	0.0138 ± 0.0056

Table 1: Low-rank recovery experiments on three real-world image datasets: Fashion-MNIST (d=28,r=10), Places365 (d=256,r=100), and ImageNet-O (d=512,r=200). Observations are formed using bilinear sketching with m=5,50,80 and additive $\mathcal{N}(0,0.01)$ noise. We compare nuclear norm, weighted nuclear norm, and nonconvex methods (SCAD and MCP).

Conclusions

• We have proposed a novel approach for low-rank matrix estimation from bilinear measurements using the non-convex penalty.

We have presented both the theoretical and empirical results.

Thank you!

Website: https://wenbinwang12.github.io

Email: wangwb2023@shanghaitech.edu.cn